Question #216462

6)                 If f(x) takes the values -21, 15, 12 and 3 respectively when x assumes the values -1, 1, 2 and 3, find the polynomial which approximates f(x).



1
Expert's answer
2021-07-18T10:22:25-0400

Solution.

Each of the points (-1,-21), (1,15),(2,12),(3,3​) satisfies the equation p=ax3+bx2+cx+dp=ax^3+bx^2+cx+d  for some unknown a,b,c,d.a,b,c,d.  Substitute each point in the equation and make a matrix equation. Let be A=(11111111842127931),A=\begin{pmatrix} -1& 1 &-1&1 \\ 1 & 1 & 1&1\\ 8 & 4 &2& 1\\27&9&3&1 \end{pmatrix}, X=(abcd)and B=(2115123).X=\begin{pmatrix} a \\ b\\ c\\d \end{pmatrix} \text{and }B=\begin{pmatrix} -21 \\ 15\\ 12\\3 \end{pmatrix}. We will have eqution


AX=B,or(11111111842127931)(abcd)=(2115123).AX=B, \text{or} \newline\begin{pmatrix} -1& 1 &-1&1 \\ 1 & 1 & 1&1\\ 8 & 4 &2& 1\\27&9&3&1 \end{pmatrix}\cdot \begin{pmatrix} a \\ b\\ c\\d \end{pmatrix} =\begin{pmatrix} -21 \\ 15\\ 12\\3 \end{pmatrix}.

Solve matrix equation: X=A1B.X = A^{-1} · B.

detA=11111111842127931=48.\det A=\begin{vmatrix} -1& 1 &-1&1 \\ 1 & 1 & 1&1\\ 8 & 4 &2& 1\\27&9&3&1 \end{vmatrix}=48.

A1=(1612160342114712125614123212).A^{-1}=\begin{pmatrix} -\frac{1}{6} & -\frac{1}{2} &\frac{1}{6}&0\\ \frac{3}{4} & 2&-1&\frac{1}{4}\\ -\frac{7}{12}&-\frac{1}{2}&\frac{5}{6}&-\frac{1}{4}\\ -\frac{1}{2}&-3&-2&-\frac{1}{2} \end{pmatrix}.

X=(19176),or a=1,b=9,c=17,d=6.X=\begin{pmatrix} 1 \\ -9\\ 17\\6 \end{pmatrix}, \text{or } a=1, b=-9, c=17,d=6.

So, p=x39x2+17x+6.p=x^3-9x^2+17x+6.  It is the polynomial function.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS