6)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â If f(x) takes the values -21, 15, 12 and 3 respectively when x assumes the values -1, 1, 2 and 3, find the polynomial which approximates f(x).
Solution.
Each of the points (-1,-21), (1,15),(2,12),(3,3​) satisfies the equation "p=ax^3+bx^2+cx+d"  for some unknown "a,b,c,d."  Substitute each point in the equation and make a matrix equation. Let be "A=\\begin{pmatrix} -1& 1 &-1&1 \\\\ 1 & 1 & 1&1\\\\ 8 & 4 &2& 1\\\\27&9&3&1 \\end{pmatrix}," "X=\\begin{pmatrix} a \\\\ b\\\\ c\\\\d \\end{pmatrix} \\text{and }B=\\begin{pmatrix} -21 \\\\ 15\\\\ 12\\\\3 \\end{pmatrix}." We will have eqution
Solve matrix equation:Â "X = A^{-1} \u00b7 B."
"\\det A=\\begin{vmatrix} -1& 1 &-1&1 \\\\ 1 & 1 & 1&1\\\\ 8 & 4 &2& 1\\\\27&9&3&1 \\end{vmatrix}=48."
"A^{-1}=\\begin{pmatrix}\n -\\frac{1}{6} & -\\frac{1}{2} &\\frac{1}{6}&0\\\\\n \\frac{3}{4} & 2&-1&\\frac{1}{4}\\\\\n-\\frac{7}{12}&-\\frac{1}{2}&\\frac{5}{6}&-\\frac{1}{4}\\\\\n-\\frac{1}{2}&-3&-2&-\\frac{1}{2}\n\\end{pmatrix}."
"X=\\begin{pmatrix} 1 \\\\ -9\\\\ 17\\\\6 \\end{pmatrix}, \\text{or } a=1, b=-9, c=17,d=6."
So, "p=x^3-9x^2+17x+6."  It is the polynomial function.
Comments
Leave a comment