Find the smallest positive root by using the bisection method
2sin(2x)+2x^3-5
with 3 decimal plates
Given,
"2x^3+2\\sin (2x)-5=0"
"\\Rightarrow f(x)=2x^3+2\\sin(2x)-5"
Now, x=0, 1, 2...
1st Iteration:
"f(1)=-1.1814<0" and "f(2)=9.4864>0"
Now, root lies between 1 and 2.
"x_o=\\frac{1+2}{2}=1.5"
"f(x_o)=f(1.5)=2*1.5^3+ 2\\sin(3)-5=2.0322>2"
2nd Iteration:
"f(1)=-1.1814<0"
and "f(1.5)=2.0322>0"
Root lies between 1 and 1.5
"x_1=\\frac{1+1.5}{2}=1.25"
"f(x_1)=f(1.25)=2*1.253+2\\sin(2.5)-5=0.1032>0"
3rd Iteration:
Here "f(1)=-1.1814<0" and "f(1.25)=0.1032>0"
Now, Root lies between 1 and 1.25
"x_2=\\frac{1+1.25}{2}=1.125"
Comments
Leave a comment