Question #183084

Find the smallest positive root by using the bisection method

2sin(2x)+2x^3-5


with 3 decimal plates

1
Expert's answer
2021-04-25T09:23:33-0400

Given,

2x3+2sin(2x)5=02x^3+2\sin (2x)-5=0

f(x)=2x3+2sin(2x)5\Rightarrow f(x)=2x^3+2\sin(2x)-5

Now, x=0, 1, 2...

1st Iteration:

f(1)=1.1814<0f(1)=-1.1814<0 and f(2)=9.4864>0f(2)=9.4864>0

Now, root lies between 1 and 2.

xo=1+22=1.5x_o=\frac{1+2}{2}=1.5

f(xo)=f(1.5)=21.53+2sin(3)5=2.0322>2f(x_o)=f(1.5)=2*1.5^3+ 2\sin(3)-5=2.0322>2


2nd Iteration:

f(1)=1.1814<0f(1)=-1.1814<0

and f(1.5)=2.0322>0f(1.5)=2.0322>0

Root lies between 1 and 1.5

x1=1+1.52=1.25x_1=\frac{1+1.5}{2}=1.25

f(x1)=f(1.25)=21.253+2sin(2.5)5=0.1032>0f(x_1)=f(1.25)=2*1.253+2\sin(2.5)-5=0.1032>0


3rd Iteration:

Here f(1)=1.1814<0f(1)=-1.1814<0 and f(1.25)=0.1032>0f(1.25)=0.1032>0

Now, Root lies between 1 and 1.25

x2=1+1.252=1.125x_2=\frac{1+1.25}{2}=1.125


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS