x2-2x-3=0 for the positive root by iteration method.
"Given\\ equation \\ is \\ x^2-x-3=0......(1)\\\\\nTo \\ initiate \\ the \\ iterative \\ method \\ , we \\ find \\ the \\ interval \\ \\\\ in \\ which\\ (1) \\ has\\ a\\ root \\ by \\ using \\ Intermetiate \\ value \\ theorem.\\\\\nConsider \\ value \\ of \\ (1) \\ at \\ x= 1\\ which \\ is \\ (1)^2 -1-3=1-4=-3<0\\\\\nAt \\ x= 2\\ , 2^2 -2-3=4-5=-1<0\\\\\nAt \\ x=3, \\ 3^2 -3-3=3>0\\\\\nBy \\ Intermediate \\ value \\ theorem \\ there \\ which\\ states\\ that, \\ if \\ f(x) \\ is \\\\continuous \\ in \\ an \\ interval [a,b] and f(a)f(b)<0, then \\ \\ there \\ exists \\ c \\ in \\ (a, b) \\ such \\ that \\ f(c)=0.\\\\\nHence, equation ( 1) \\ has \\ a \\ root \\ in \\ (2, 3).\nLet\\ us \\ set \\ up \\ the \\ iterative \\ equation \\ for \\ x\\\\\nFrom \\ (1),\\ we \\ have \\ x^2 =x+3\\Rightarrow x=\\sqrt{x+3}\\\\\n\\Rightarrow\\ The \\ iterative \\ equation \\ for \\ the \\ root \\ is \\ x_n=\\sqrt{x_{n-1}+3},\\ n=1, 2,3 , ....\\\\\nLet \\ x_{0}=Midvalue \\ of\\ (2,3)=\\frac{2+3}{2}=1.5\\Rightarrow x_{0}=1.5\\\\\nx_{1}=\\sqrt{1.5+3}\\\\\n=\\sqrt{4.5}\\\\\n=2.1213203436 \n\\Rightarrow x_{1}=2.1213203436\\\\\nx_2=\\sqrt{x_{1}+3}\\\\\n=\\sqrt{2.1213203436+3}\\\\\n =\\sqrt{5.1213203436}\\\\\n=2.2630334385 \\Rightarrow \\ x_{2}= 2.2630334385\\\\\nx_3=\\sqrt{x_{2}+3}\\\\\n=\\sqrt{2.2630334385+3}\\\\\n =\\sqrt{5.2630334385}\\\\\n=2.2941302139 \\Rightarrow \\ x_{3}= 2.2941302139\\\\\nx_4=\\sqrt{x_{3}+3}\\\\\n=\\sqrt{2.2941302139+3}\\\\\n =\\sqrt{5.2941302139}\\\\\n=2.3008976974 \\Rightarrow \\ x_{4}= 2.3008976974 \\\\\nx_5=\\sqrt{x_{4}+3}\\\\\n=\\sqrt{2.3008976974+3}\\\\\n =\\sqrt{5.3008976974}\\\\\n=2.3023678458 \\Rightarrow \\ x_{5}= 2.3023678458 \\\\\nx_6=\\sqrt{x_{5}+3}\\\\\n=\\sqrt{2.3023678458+3}\\\\\n =\\sqrt{5.3023678458}\\\\\n=2.3026870925 \\Rightarrow \\ x_{6}= 2.3026870925\\\\\nx_7=\\sqrt{x_{6}+3}\\\\\n=\\sqrt{ 2.3026870925+3}\\\\\n =\\sqrt{ 5.3026870925}\\\\\n=2.3027564119 \\Rightarrow \\ x_{7}= 2.3027564119\\\\\nx_8=\\sqrt{x_{7}+3}\\\\\n=\\sqrt{2.3027564119+3}\\\\\n =\\sqrt{5.3027564119}\\\\\n=2.3027714632 \\Rightarrow \\ x_{8}= 2.3027714632\\\\\nx_9=\\sqrt{x_{8}+3}\\\\\n=\\sqrt{2.3027714632+3}\\\\\n =\\sqrt{5.3027714632}\\\\\n=2.3027747313\\Rightarrow \\ x_{9}=2.3027747313\\\\\nSince, \\ x_8, and \\ \\ x_9 \\ are\\ equal \\ upto \\ 5th \\ decimal\\\\\nthe\\ approximate \\ root\\ of \\ (1) \\ is \\ x= 2.30277(upto\\ 5 \\ decimals)"
Comments
Leave a comment