Answer to Question #161292 in Quantitative Methods for Sunny

Question #161292

Based on below data, test that Brand preference and Education qualifications are independent, at 5% level of significance.


(No. OF PERSONS PREFERRING BRANDS)


Education Brand A Brand B Brand C

qualification


SSC 22 34 35

HSC 28 35 28

Graduate 30 44 27

Post graduate 55 42 28


1
Expert's answer
2021-02-24T06:43:56-0500

The Chi-Square Test of Independence:

H0H_0 : Brand preference is independent of Education qualifications

H1H_1 : Brand preference is dependent of Education qualifications


X2=i=1Rj=1C(aijeij)2eij\Chi^2=\displaystyle\sum^R_{i=1}\displaystyle\sum^C_{j=1}\frac{(a_{ij}-e_{ij})^2}{e_{ij}}


eij=row(i)totalcol(j)totalgrandtotale_{ij}=\frac{row(i)total\cdot col(j)total}{grandtotal}


grandtotal=408grandtotal=408


e11=13591408=30.11e_{11}=\frac{135\cdot91}{408}=30.11 , e12=15591408=34.57e_{12}=\frac{155\cdot91}{408}=34.57 , e13=11891408=26.32e_{13}=\frac{118\cdot91}{408}=26.32

e21=13591408=30.11e_{21}=\frac{135\cdot91}{408}=30.11 , e22=15591408=34.57e_{22}=\frac{155\cdot91}{408}=34.57 , e23=11891408=26.32e_{23}=\frac{118\cdot91}{408}=26.32

e31=135101408=33.42e_{31}=\frac{135\cdot101}{408}=33.42 , e32=155101408=38.37e_{32}=\frac{155\cdot101}{408}=38.37 , e33=118101408=29.21e_{33}=\frac{118\cdot101}{408}=29.21

e41=135125408=41.36e_{41}=\frac{135\cdot125}{408}=41.36 , e42=155125408=47.49e_{42}=\frac{155\cdot125}{408}=47.49 , e43=118125408=36.15e_{43}=\frac{118\cdot125}{408}=36.15


X2=2.18+0.01+2.86+0.15+0.01+0.11+0.35+0.83+0.17+\Chi^2=2.18+0.01+2.86+0.15+0.01+0.11+0.35+0.83+0.17+

+4.50+0.63+1.84=13.64+4.50+0.63+1.84=13.64


Degrees of freedom:

df=df= (number of columns – 1)(number of rows – 1)

df=23=6df=2\cdot3=6


p-value=P(X>13.64)=0.038=P(\Chi^>13.64)=0.038

α=0.05\alpha=0.05 , α>\alpha> p-value

Since α > p-value, reject H0. This means that the factors are not independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment