Based on below data, test that Brand preference and Education qualifications are independent, at 5% level of significance.
(No. OF PERSONS PREFERRING BRANDS)
Education Brand A Brand B Brand C
qualification
SSC 22 34 35
HSC 28 35 28
Graduate 30 44 27
Post graduate 55 42 28
The Chi-Square Test of Independence:
"H_0" : Brand preference is independent of Education qualifications
"H_1" : Brand preference is dependent of Education qualifications
"\\Chi^2=\\displaystyle\\sum^R_{i=1}\\displaystyle\\sum^C_{j=1}\\frac{(a_{ij}-e_{ij})^2}{e_{ij}}"
"e_{ij}=\\frac{row(i)total\\cdot col(j)total}{grandtotal}"
"grandtotal=408"
"e_{11}=\\frac{135\\cdot91}{408}=30.11" , "e_{12}=\\frac{155\\cdot91}{408}=34.57" , "e_{13}=\\frac{118\\cdot91}{408}=26.32"
"e_{21}=\\frac{135\\cdot91}{408}=30.11" , "e_{22}=\\frac{155\\cdot91}{408}=34.57" , "e_{23}=\\frac{118\\cdot91}{408}=26.32"
"e_{31}=\\frac{135\\cdot101}{408}=33.42" , "e_{32}=\\frac{155\\cdot101}{408}=38.37" , "e_{33}=\\frac{118\\cdot101}{408}=29.21"
"e_{41}=\\frac{135\\cdot125}{408}=41.36" , "e_{42}=\\frac{155\\cdot125}{408}=47.49" , "e_{43}=\\frac{118\\cdot125}{408}=36.15"
"\\Chi^2=2.18+0.01+2.86+0.15+0.01+0.11+0.35+0.83+0.17+"
"+4.50+0.63+1.84=13.64"
Degrees of freedom:
"df=" (number of columns – 1)(number of rows – 1)
"df=2\\cdot3=6"
p-value"=P(\\Chi^>13.64)=0.038"
"\\alpha=0.05" , "\\alpha>" p-value
Since α > p-value, reject H0. This means that the factors are not independent.
Comments
Leave a comment