The Chi-Square Test of Independence:
H0 : Brand preference is independent of Education qualifications
H1 : Brand preference is dependent of Education qualifications
X2=i=1∑Rj=1∑Ceij(aij−eij)2
eij=grandtotalrow(i)total⋅col(j)total
grandtotal=408
e11=408135⋅91=30.11 , e12=408155⋅91=34.57 , e13=408118⋅91=26.32
e21=408135⋅91=30.11 , e22=408155⋅91=34.57 , e23=408118⋅91=26.32
e31=408135⋅101=33.42 , e32=408155⋅101=38.37 , e33=408118⋅101=29.21
e41=408135⋅125=41.36 , e42=408155⋅125=47.49 , e43=408118⋅125=36.15
X2=2.18+0.01+2.86+0.15+0.01+0.11+0.35+0.83+0.17+
+4.50+0.63+1.84=13.64
Degrees of freedom:
df= (number of columns – 1)(number of rows – 1)
df=2⋅3=6
p-value=P(X>13.64)=0.038
α=0.05 , α> p-value
Since α > p-value, reject H0. This means that the factors are not independent.
Comments
Leave a comment