Question #288252

USE DE MOIVRE'S THEOREM TO EVALUATE (SQUARE ROOT OF 3 MINUS 1)^5. EXPRESS YOUR ANSWER IN THE STANDARD FORM A+BI

1
Expert's answer
2022-01-18T13:45:04-0500

De Moivre's theorem states


(cosθ+isinθ)n=cosnθ+isinnθ(\cos \theta +i\sin \theta)^n=\cos n\theta+i\sin n\theta


Let z=3iz=\sqrt{3}-i


z=(3)2+(1)2=2|z|=\sqrt{(\sqrt{3})^2+(-1)^2}=2

tanθ=13,θ=π6\tan \theta=\dfrac{-1}{\sqrt{3}}, \theta=-\dfrac{\pi}{6}

z=3i=2(cos(π6)+isin(π6))z=\sqrt{3}-i=2(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6}))

Therefore


z5=(3i)5=(2(cos(π6)+isin(π6)))5z^5=(\sqrt{3}-i)^5=(2(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6})))^5

=25(cos(π6)+isin(π6))5=2^5(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6}))^5

=32(cos(5π6)+isin(5π6))=32(\cos (-\dfrac{5\pi}{6}) +i\sin (-\dfrac{5\pi}{6}))

=32(32i12)=32(-\dfrac{\sqrt{3}}{2}-i\dfrac{1}{2})

=16316i=-16\sqrt{3}-16i

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS