De Moivre's theorem states
(cosθ+isinθ)n=cosnθ+isinnθ
Let z=3−i
∣z∣=(3)2+(−1)2=2
tanθ=3−1,θ=−6π
z=3−i=2(cos(−6π)+isin(−6π)) Therefore
z5=(3−i)5=(2(cos(−6π)+isin(−6π)))5
=25(cos(−6π)+isin(−6π))5
=32(cos(−65π)+isin(−65π))
=32(−23−i21)
=−163−16i
Comments