USE DE MOIVRE'S THEOREM TO EVALUATE (SQUARE ROOT OF 3 MINUS 1)^5. EXPRESS YOUR ANSWER IN THE STANDARD FORM A+BI
De Moivre's theorem states
Let "z=\\sqrt{3}-i"
"\\tan \\theta=\\dfrac{-1}{\\sqrt{3}}, \\theta=-\\dfrac{\\pi}{6}"
"z=\\sqrt{3}-i=2(\\cos (-\\dfrac{\\pi}{6}) +i\\sin (-\\dfrac{\\pi}{6}))"
Therefore
"=2^5(\\cos (-\\dfrac{\\pi}{6}) +i\\sin (-\\dfrac{\\pi}{6}))^5"
"=32(\\cos (-\\dfrac{5\\pi}{6}) +i\\sin (-\\dfrac{5\\pi}{6}))"
"=32(-\\dfrac{\\sqrt{3}}{2}-i\\dfrac{1}{2})"
"=-16\\sqrt{3}-16i"
Comments
Leave a comment