De Moivre's theorem states
( cos θ + i sin θ ) n = cos n θ + i sin n θ (\cos \theta +i\sin \theta)^n=\cos n\theta+i\sin n\theta ( cos θ + i sin θ ) n = cos n θ + i sin n θ
Let z = 3 − i z=\sqrt{3}-i z = 3 − i
∣ z ∣ = ( 3 ) 2 + ( − 1 ) 2 = 2 |z|=\sqrt{(\sqrt{3})^2+(-1)^2}=2 ∣ z ∣ = ( 3 ) 2 + ( − 1 ) 2 = 2
tan θ = − 1 3 , θ = − π 6 \tan \theta=\dfrac{-1}{\sqrt{3}}, \theta=-\dfrac{\pi}{6} tan θ = 3 − 1 , θ = − 6 π
z = 3 − i = 2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) z=\sqrt{3}-i=2(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6})) z = 3 − i = 2 ( cos ( − 6 π ) + i sin ( − 6 π )) Therefore
z 5 = ( 3 − i ) 5 = ( 2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) ) 5 z^5=(\sqrt{3}-i)^5=(2(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6})))^5 z 5 = ( 3 − i ) 5 = ( 2 ( cos ( − 6 π ) + i sin ( − 6 π )) ) 5
= 2 5 ( cos ( − π 6 ) + i sin ( − π 6 ) ) 5 =2^5(\cos (-\dfrac{\pi}{6}) +i\sin (-\dfrac{\pi}{6}))^5 = 2 5 ( cos ( − 6 π ) + i sin ( − 6 π ) ) 5
= 32 ( cos ( − 5 π 6 ) + i sin ( − 5 π 6 ) ) =32(\cos (-\dfrac{5\pi}{6}) +i\sin (-\dfrac{5\pi}{6})) = 32 ( cos ( − 6 5 π ) + i sin ( − 6 5 π ))
= 32 ( − 3 2 − i 1 2 ) =32(-\dfrac{\sqrt{3}}{2}-i\dfrac{1}{2}) = 32 ( − 2 3 − i 2 1 )
= − 16 3 − 16 i =-16\sqrt{3}-16i = − 16 3 − 16 i
Comments