compilation of the THREE questions
(1) we shall solve the first question using the Haversine formula
h a v A = h a v a − h a v ( b − c ) s i n b ∗ s i n c havA=\frac{hav \hspace{0.1cm} a - hav(b-c)}{sin b* sin c} ha v A = s inb ∗ s in c ha v a − ha v ( b − c )
We convert the give parameters to degrees
a = 68 ° 4 1 ′ = 68.8 ° b = 54 ° 1 5 ′ = 53.25 ° c = 46 ° 3 0 ′ = 46.5 ° a=68°41^{\prime}=68.8°\\b=54°15^{\prime}=53.25°\\c=46°30^{\prime}=46.5° a = 68°4 1 ′ = 68.8° b = 54°1 5 ′ = 53.25° c = 46°3 0 ′ = 46.5°
We know that
h a v ( θ ) = s i n 2 ( θ 2 ) hav(\theta)=sin^{2}(\frac{\theta}{2}) ha v ( θ ) = s i n 2 ( 2 θ )
We shall then find for the parameters a, b and c
h a v ( a ) = h a v ( 68.8 ) = s i n 2 ( 68.8 2 ) = s i n 2 ( 34.5 ) = 0.564 9 2 = 0.3192 hav(a)=hav(68.8)=sin^{2}(\frac{68.8}{2})\\\hspace{1.cm}=sin^{2}(34.5)=0.5649^{2}=0.3192 ha v ( a ) = ha v ( 68.8 ) = s i n 2 ( 2 68.8 ) = s i n 2 ( 34.5 ) = 0.564 9 2 = 0.3192
h a v ( b ) = h a v ( 53.25 ) = s i n 2 ( 53.25 2 ) = s i n 2 ( 26.625 ) = 0.448 1 2 = 0.2008 hav(b)=hav(53.25)=sin^{2}(\frac{53.25}{2})\\\hspace{1.cm}=sin^{2}(26.625)=0.4481^{2}\\\hspace{1cm}=0.2008 ha v ( b ) = ha v ( 53.25 ) = s i n 2 ( 2 53.25 ) = s i n 2 ( 26.625 ) = 0.448 1 2 = 0.2008
h a v ( c ) = h a v ( 46.5 ) = s i n 2 ( 46.5 2 ) = s i n 2 ( 23.25 ) = 0.394 7 2 = 0.1558 hav(c)=hav(46.5)=sin^{2}(\frac{46.5}{2})\\\hspace{1.cm}=sin^{2}(23.25)=0.3947^{2}\\\hspace{1cm}=0.1558 ha v ( c ) = ha v ( 46.5 ) = s i n 2 ( 2 46.5 ) = s i n 2 ( 23.25 ) = 0.394 7 2 = 0.1558
Also, we have
h a v ( b − c ) = h a v ( 53.25 − 46.5 ) = h a v ( 6.75 ) = s i n 2 ( 6.75 2 ) = s i n 2 ( 3.375 ) = 0.58 9 2 = 0.00347 hav(b-c)=hav(53.25-46.5)\\\hspace{1cm}=hav(6.75)=sin^{2}(\frac{6.75}{2})\\\hspace{1.cm}=sin^{2}(3.375)=0.589^{2}\\\hspace{1cm}=0.00347 ha v ( b − c ) = ha v ( 53.25 − 46.5 ) = ha v ( 6.75 ) = s i n 2 ( 2 6.75 ) = s i n 2 ( 3.375 ) = 0.58 9 2 = 0.00347
h a v ( a − c ) = h a v ( 68.8 − 46.5 ) = h a v ( 22.3 ) = s i n 2 ( 22.3 2 ) = s i n 2 ( 11.15 ) = 0.193 4 2 = 0.0374 hav(a-c)=hav(68. 8-46.5)\\\hspace{1cm}=hav(22.3)=sin^{2}(\frac{22.3}{2})\\\hspace{1.cm}=sin^{2}(11.15)=0.1934^{2}\\\hspace{1cm}=0.0374 ha v ( a − c ) = ha v ( 68.8 − 46.5 ) = ha v ( 22.3 ) = s i n 2 ( 2 22.3 ) = s i n 2 ( 11.15 ) = 0.193 4 2 = 0.0374
h a v ( a − b ) = h a v ( 68.8 − 53.25 ) = h a v ( 15.55 ) = s i n 2 ( 15.55 2 ) = s i n 2 ( 7.775 ) = 0.135 3 2 = 0.0183 hav(a-b)=hav(68.8-53.25)\\\hspace{1cm}=hav(15.55)=sin^{2}(\frac{15.55}{2})\\\hspace{1.cm}=sin^{2}(7.775)=0.1353^{2}\\\hspace{1cm}=0.0183 ha v ( a − b ) = ha v ( 68.8 − 53.25 ) = ha v ( 15.55 ) = s i n 2 ( 2 15.55 ) = s i n 2 ( 7.775 ) = 0.135 3 2 = 0.0183
The sin of the parameters a, b and c
s i n ( a ) = s i n ( 68.8 ° ) = 0.9323 s i n ( b ) = s i n ( 53.25 ° ) = 0.8013 s i n ( c ) = s i n ( 46.5 ° ) = 0.7254 sin(a)=sin(68.8°)=0.9323\\sin(b)=sin(53.25°)=0.8013\\sin(c)=sin(46.5°)=0.7254 s in ( a ) = s in ( 68.8° ) = 0.9323 s in ( b ) = s in ( 53.25° ) = 0.8013 s in ( c ) = s in ( 46.5° ) = 0.7254
Now
Using the Haversine formula to solve for havA, havB and havC
h a v A = 0.3192 − 0.00347 0.8013 ∗ 0.7254 = 0.5432 havA=\frac{0.3192-0.00347}{0.8013*0.7254}=0.5432\\ ha v A = 0.8013 ∗ 0.7254 0.3192 − 0.00347 = 0.5432
h a v B = 0.2008 − 0.00347 0.9323 ∗ 0.7254 = 0.2416 havB=\frac{0.2008-0.00347}{0.9323*0.7254}=0.2416 ha v B = 0.9323 ∗ 0.7254 0.2008 − 0.00347 = 0.2416
h a v C = 0.1558 − 0.0183 0.9323 ∗ 0.8013 = 0.1840 havC=\frac{0.1558-0.0183}{0.9323*0.8013}=0.1840 ha v C = 0.9323 ∗ 0.8013 0.1558 − 0.0183 = 0.1840
h a v A = 0.5432 ⟹ 0.5432 = s i n 2 ( θ 2 ) ⟹ 0.5432 = s i n ( θ 2 ) ⟹ 0.7370 = s i n ( θ 2 ) ⟹ s i n − 1 ( 0.7370 ) = θ 2 ⟹ 47.4764 = θ 2 ⟹ θ = 94.95 ° A = 94.95 ° havA=0.5432\\\implies0.5432=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.5432}=sin(\frac{\theta}{2})\\\implies0.7370=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.7370)=\frac{\theta}{2}\\\implies 47.4764=\frac{\theta}{2}\\\implies \theta=94.95°
\\A=94.95° ha v A = 0.5432 ⟹ 0.5432 = s i n 2 ( 2 θ ) ⟹ 0.5432 = s in ( 2 θ ) ⟹ 0.7370 = s in ( 2 θ ) ⟹ s i n − 1 ( 0.7370 ) = 2 θ ⟹ 47.4764 = 2 θ ⟹ θ = 94.95° A = 94.95°
h a v B = 0.2416 ⟹ 0.2416 = s i n 2 ( θ 2 ) ⟹ 0.2416 = s i n ( θ 2 ) ⟹ 0.4915 = s i n ( θ 2 ) ⟹ s i n − 1 ( 0.4915 ) = θ 2 ⟹ 29.44 = θ 2 ⟹ θ = 58.88 ° B = 58.88 ° havB=0.2416\\\implies0.2416=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.2416}=sin(\frac{\theta}{2})\\\implies0.4915=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.4915)=\frac{\theta}{2}\\\implies 29.44=\frac{\theta}{2}\\\implies \theta=58.88°
\\B=58.88° ha v B = 0.2416 ⟹ 0.2416 = s i n 2 ( 2 θ ) ⟹ 0.2416 = s in ( 2 θ ) ⟹ 0.4915 = s in ( 2 θ ) ⟹ s i n − 1 ( 0.4915 ) = 2 θ ⟹ 29.44 = 2 θ ⟹ θ = 58.88° B = 58.88°
h a v C = 0.1840 ⟹ 0.1840 = s i n 2 ( θ 2 ) ⟹ 0.1840 = s i n ( θ 2 ) ⟹ 0.4289 = s i n ( θ 2 ) ⟹ s i n − 1 ( 0.4289 ) = θ 2 ⟹ 25.4011 = θ 2 ⟹ θ = 50.80 ° C = 50.80 ° havC=0.1840\\\implies0.1840=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.1840}=sin(\frac{\theta}{2})\\\implies0.4289=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.4289)=\frac{\theta}{2}\\\implies 25.4011=\frac{\theta}{2}\\\implies \theta=50.80°
\\C=50.80° ha v C = 0.1840 ⟹ 0.1840 = s i n 2 ( 2 θ ) ⟹ 0.1840 = s in ( 2 θ ) ⟹ 0.4289 = s in ( 2 θ ) ⟹ s i n − 1 ( 0.4289 ) = 2 θ ⟹ 25.4011 = 2 θ ⟹ θ = 50.80° C = 50.80°
(2) We have a right spherical triangle with
c = 69 ° 25 ‘ , B = 63 ° 25 ‘ , A = 90 ° c=69°25`, B=63°25`, A=90° c = 69°25‘ , B = 63°25‘ , A = 90°
In the first
S i n ( c ) = t a n ( b ) ∗ t a n ( 90 − B ) Sin(c)=tan(b) * tan(90-B) S in ( c ) = t an ( b ) ∗ t an ( 90 − B )
∴ s i n ( c ) = t a n ( b ) ∗ c o t ( B ) ∴ t a n ( b ) = s i n ( c ) c o t ( B ) = s i n ( c ) ∗ t a n ( B ) \therefore sin(c)=tan(b) * cot(B)\\\therefore tan(b)=\frac{sin(c)}{cot(B)}=sin(c) * tan(B) ∴ s in ( c ) = t an ( b ) ∗ co t ( B ) ∴ t an ( b ) = co t ( B ) s in ( c ) = s in ( c ) ∗ t an ( B )
= s i n ( 69.42 ) − t a n ( 63.42 ) = 1.8711 =sin(69.42)-tan(63.42)\\=1.8711 = s in ( 69.42 ) − t an ( 63.42 ) = 1.8711
∴ t a n ( b ) = 1.8711 b = t a n − 1 1.8711 b = 61.88 \therefore tan(b)=1.8711\\b=tan^{-1}1.8711\\b=61.88 ∴ t an ( b ) = 1.8711 b = t a n − 1 1.8711 b = 61.88
In the second
s i n ( 90 − C ) = c o s ( c ) ∗ c o s ( 90 − B ) ∴ c o s ( C ) = c o s ( c ) ∗ s i n ( B ) ∴ c o s ( C ) = c o s ( 69.42 ) ∗ s i n ( 63.42 ) sin(90-C)=cos(c) * cos(90-B)\\\therefore cos(C)= cos(c) * sin(B)\\\therefore cos(C)=cos(69.42) * sin(63.42) s in ( 90 − C ) = cos ( c ) ∗ cos ( 90 − B ) ∴ cos ( C ) = cos ( c ) ∗ s in ( B ) ∴ cos ( C ) = cos ( 69.42 ) ∗ s in ( 63.42 )
= 0.3143 =0.3143 = 0.3143
C = c o s − 1 0.3143 C = 71.68 ° C=cos^{-1}0.3143\\C=71.68° C = co s − 1 0.3143 C = 71.68°
In the third
s i n ( 90 − B ) = t a n ( c ) ∗ t a n ( 90 − a ) ∴ c o s ( B ) = t a n ( c ) ∗ c o t ( a ) ∴ c o s ( B ) = t a n ( c ) t a n ( a ) ∴ t a n ( a ) = t a n ( c ) t a n ( B ) sin(90-B)=tan(c) * tan(90-a)\\\therefore cos(B)=tan(c) * cot(a)\\\therefore cos(B)=\frac{tan(c)}{tan(a)}\\\therefore tan(a)=\frac{tan(c)}{tan(B)} s in ( 90 − B ) = t an ( c ) ∗ t an ( 90 − a ) ∴ cos ( B ) = t an ( c ) ∗ co t ( a ) ∴ cos ( B ) = t an ( a ) t an ( c ) ∴ t an ( a ) = t an ( B ) t an ( c )
= t a n ( 69.42 ) c o s ( 63.42 ) = 2.6633 0.4474 = 5.9528 =\frac{tan(69.42)}{cos(63.42)}=\frac{2.6633}{0.4474}=5.9528 = cos ( 63.42 ) t an ( 69.42 ) = 0.4474 2.6633 = 5.9528
a = t a n − 1 ( 5.9528 ) a = 80.46 ° a=tan^{-1}(5.9528)\\a=80.46° a = t a n − 1 ( 5.9528 ) a = 80.46°
(3) we shall calculate the Area of the spherical triangle in (1) and (2)
To calculate the Area for (1)
Using the formula
A = π R 2 E 180 A=\frac{\pi R^{2} E}{180} A = 180 π R 2 E
Where E is the excess and we have
E = A + B + C − 180 ° E= A+B+C - 180° E = A + B + C − 180°
To calculate the Excess for question (1)
E = 94.95 ° + 58.88 ° + 50.80 ° − 180 ° E = 24.63 E=94.95°+58.88°+50.80° - 180°\\E=24.63 E = 94.95° + 58.88° + 50.80° − 180° E = 24.63
Now
A = ( 3.142 ) ( 30 ) 2 ( 24.63 ) 180 A=\frac{(3.142) (30)^{2} (24.63)}{180} A = 180 ( 3.142 ) ( 30 ) 2 ( 24.63 )
A = ( 3.142 ) ( 900 ) ( 24.63 ) 180 A=\frac{(3.142) (900) (24.63)}{180} A = 180 ( 3.142 ) ( 900 ) ( 24.63 )
A = 69648.714 180 A = 386.9 A=\frac{69648.714}{180}\\A=386.9 A = 180 69648.714 A = 386.9
Also, for question (2)
E = 90 ° + 63.42 ° + 71.68 ° − 180 ° E = 45.1 E=90°+63.42°+71.68°-180°\\E=45.1 E = 90° + 63.42° + 71.68° − 180° E = 45.1
A = π R 2 E 180 A=\frac{\pi R^{2} E}{180} A = 180 π R 2 E
A = ( 3.142 ) ( 30 ) 2 ( 45.1 ) 180 A=\frac{(3.142) (30)^{2} (45.1)}{180} A = 180 ( 3.142 ) ( 30 ) 2 ( 45.1 )
A = ( 3.142 ) ( 900 ) ( 45.1 ) 180 A=\frac{(3.142) (900) (45.1)}{180} A = 180 ( 3.142 ) ( 900 ) ( 45.1 )
A = 127533.78 180 A = 708.521 A=\frac{127533.78}{180}\\A=708.521 A = 180 127533.78 A = 708.521
Comments