SPHERICAL TRIGONOMETRY
compilation of the THREE questions
(1) we shall solve the first question using the Haversine formula
"havA=\\frac{hav \\hspace{0.1cm} a - hav(b-c)}{sin b* sin c}"
We convert the give parameters to degrees
"a=68\u00b041^{\\prime}=68.8\u00b0\\\\b=54\u00b015^{\\prime}=53.25\u00b0\\\\c=46\u00b030^{\\prime}=46.5\u00b0"
We know that
"hav(\\theta)=sin^{2}(\\frac{\\theta}{2})"
We shall then find for the parameters a, b and c
"hav(a)=hav(68.8)=sin^{2}(\\frac{68.8}{2})\\\\\\hspace{1.cm}=sin^{2}(34.5)=0.5649^{2}=0.3192"
"hav(b)=hav(53.25)=sin^{2}(\\frac{53.25}{2})\\\\\\hspace{1.cm}=sin^{2}(26.625)=0.4481^{2}\\\\\\hspace{1cm}=0.2008"
"hav(c)=hav(46.5)=sin^{2}(\\frac{46.5}{2})\\\\\\hspace{1.cm}=sin^{2}(23.25)=0.3947^{2}\\\\\\hspace{1cm}=0.1558"
Also, we have
"hav(b-c)=hav(53.25-46.5)\\\\\\hspace{1cm}=hav(6.75)=sin^{2}(\\frac{6.75}{2})\\\\\\hspace{1.cm}=sin^{2}(3.375)=0.589^{2}\\\\\\hspace{1cm}=0.00347"
"hav(a-c)=hav(68. 8-46.5)\\\\\\hspace{1cm}=hav(22.3)=sin^{2}(\\frac{22.3}{2})\\\\\\hspace{1.cm}=sin^{2}(11.15)=0.1934^{2}\\\\\\hspace{1cm}=0.0374"
"hav(a-b)=hav(68.8-53.25)\\\\\\hspace{1cm}=hav(15.55)=sin^{2}(\\frac{15.55}{2})\\\\\\hspace{1.cm}=sin^{2}(7.775)=0.1353^{2}\\\\\\hspace{1cm}=0.0183"
The sin of the parameters a, b and c
"sin(a)=sin(68.8\u00b0)=0.9323\\\\sin(b)=sin(53.25\u00b0)=0.8013\\\\sin(c)=sin(46.5\u00b0)=0.7254"
Now
Using the Haversine formula to solve for havA, havB and havC
"havA=\\frac{0.3192-0.00347}{0.8013*0.7254}=0.5432\\\\"
"havB=\\frac{0.2008-0.00347}{0.9323*0.7254}=0.2416"
"havC=\\frac{0.1558-0.0183}{0.9323*0.8013}=0.1840"
"havA=0.5432\\\\\\implies0.5432=sin^{2}(\\frac{\\theta}{2})\\\\\\implies\\sqrt{0.5432}=sin(\\frac{\\theta}{2})\\\\\\implies0.7370=sin(\\frac{\\theta}{2})\\\\\\implies sin^{-1}(0.7370)=\\frac{\\theta}{2}\\\\\\implies 47.4764=\\frac{\\theta}{2}\\\\\\implies \\theta=94.95\u00b0\n\\\\A=94.95\u00b0"
"havB=0.2416\\\\\\implies0.2416=sin^{2}(\\frac{\\theta}{2})\\\\\\implies\\sqrt{0.2416}=sin(\\frac{\\theta}{2})\\\\\\implies0.4915=sin(\\frac{\\theta}{2})\\\\\\implies sin^{-1}(0.4915)=\\frac{\\theta}{2}\\\\\\implies 29.44=\\frac{\\theta}{2}\\\\\\implies \\theta=58.88\u00b0\n\\\\B=58.88\u00b0"
"havC=0.1840\\\\\\implies0.1840=sin^{2}(\\frac{\\theta}{2})\\\\\\implies\\sqrt{0.1840}=sin(\\frac{\\theta}{2})\\\\\\implies0.4289=sin(\\frac{\\theta}{2})\\\\\\implies sin^{-1}(0.4289)=\\frac{\\theta}{2}\\\\\\implies 25.4011=\\frac{\\theta}{2}\\\\\\implies \\theta=50.80\u00b0\n\\\\C=50.80\u00b0"
(2) We have a right spherical triangle with
"c=69\u00b025`, B=63\u00b025`, A=90\u00b0"
In the first
"Sin(c)=tan(b) * tan(90-B)"
"\\therefore sin(c)=tan(b) * cot(B)\\\\\\therefore tan(b)=\\frac{sin(c)}{cot(B)}=sin(c) * tan(B)"
"=sin(69.42)-tan(63.42)\\\\=1.8711"
"\\therefore tan(b)=1.8711\\\\b=tan^{-1}1.8711\\\\b=61.88"
In the second
"sin(90-C)=cos(c) * cos(90-B)\\\\\\therefore cos(C)= cos(c) * sin(B)\\\\\\therefore cos(C)=cos(69.42) * sin(63.42)"
"=0.3143"
"C=cos^{-1}0.3143\\\\C=71.68\u00b0"
In the third
"sin(90-B)=tan(c) * tan(90-a)\\\\\\therefore cos(B)=tan(c) * cot(a)\\\\\\therefore cos(B)=\\frac{tan(c)}{tan(a)}\\\\\\therefore tan(a)=\\frac{tan(c)}{tan(B)}"
"=\\frac{tan(69.42)}{cos(63.42)}=\\frac{2.6633}{0.4474}=5.9528"
"a=tan^{-1}(5.9528)\\\\a=80.46\u00b0"
(3) we shall calculate the Area of the spherical triangle in (1) and (2)
To calculate the Area for (1)
Using the formula
"A=\\frac{\\pi R^{2} E}{180}"
Where E is the excess and we have
"E= A+B+C - 180\u00b0"
To calculate the Excess for question (1)
"E=94.95\u00b0+58.88\u00b0+50.80\u00b0 - 180\u00b0\\\\E=24.63"
Now
"A=\\frac{(3.142) (30)^{2} (24.63)}{180}"
"A=\\frac{(3.142) (900) (24.63)}{180}"
"A=\\frac{69648.714}{180}\\\\A=386.9"
Also, for question (2)
"E=90\u00b0+63.42\u00b0+71.68\u00b0-180\u00b0\\\\E=45.1"
"A=\\frac{\\pi R^{2} E}{180}"
"A=\\frac{(3.142) (30)^{2} (45.1)}{180}"
"A=\\frac{(3.142) (900) (45.1)}{180}"
"A=\\frac{127533.78}{180}\\\\A=708.521"
Comments
Leave a comment