Question #287003

SPHERICAL TRIGONOMETRY

  1. solve for the three vertices of a spherical triangle ABC if the sides measures a=68degree48', b=53degree15' and c=46degree30'.
  2. solve for these right spherical triangle with parts side c=69degree25' and angle B=63degree25' note that this is a right spherical triangle. (HINT: use the Napier's circle to determine what can be solved first by the given parameters.)
  3. solve for the area of the spherical triangle in problem 1 and 2 if the sphere has a radius of 30m.
  4. *show solution*
1
Expert's answer
2022-01-17T18:34:57-0500

compilation of the THREE questions


(1) we shall solve the first question using the Haversine formula

havA=havahav(bc)sinbsinchavA=\frac{hav \hspace{0.1cm} a - hav(b-c)}{sin b* sin c}


We convert the give parameters to degrees

a=68°41=68.8°b=54°15=53.25°c=46°30=46.5°a=68°41^{\prime}=68.8°\\b=54°15^{\prime}=53.25°\\c=46°30^{\prime}=46.5°


We know that

hav(θ)=sin2(θ2)hav(\theta)=sin^{2}(\frac{\theta}{2})


We shall then find for the parameters a, b and c

hav(a)=hav(68.8)=sin2(68.82)=sin2(34.5)=0.56492=0.3192hav(a)=hav(68.8)=sin^{2}(\frac{68.8}{2})\\\hspace{1.cm}=sin^{2}(34.5)=0.5649^{2}=0.3192


hav(b)=hav(53.25)=sin2(53.252)=sin2(26.625)=0.44812=0.2008hav(b)=hav(53.25)=sin^{2}(\frac{53.25}{2})\\\hspace{1.cm}=sin^{2}(26.625)=0.4481^{2}\\\hspace{1cm}=0.2008


hav(c)=hav(46.5)=sin2(46.52)=sin2(23.25)=0.39472=0.1558hav(c)=hav(46.5)=sin^{2}(\frac{46.5}{2})\\\hspace{1.cm}=sin^{2}(23.25)=0.3947^{2}\\\hspace{1cm}=0.1558



Also, we have

hav(bc)=hav(53.2546.5)=hav(6.75)=sin2(6.752)=sin2(3.375)=0.5892=0.00347hav(b-c)=hav(53.25-46.5)\\\hspace{1cm}=hav(6.75)=sin^{2}(\frac{6.75}{2})\\\hspace{1.cm}=sin^{2}(3.375)=0.589^{2}\\\hspace{1cm}=0.00347


hav(ac)=hav(68.846.5)=hav(22.3)=sin2(22.32)=sin2(11.15)=0.19342=0.0374hav(a-c)=hav(68. 8-46.5)\\\hspace{1cm}=hav(22.3)=sin^{2}(\frac{22.3}{2})\\\hspace{1.cm}=sin^{2}(11.15)=0.1934^{2}\\\hspace{1cm}=0.0374


hav(ab)=hav(68.853.25)=hav(15.55)=sin2(15.552)=sin2(7.775)=0.13532=0.0183hav(a-b)=hav(68.8-53.25)\\\hspace{1cm}=hav(15.55)=sin^{2}(\frac{15.55}{2})\\\hspace{1.cm}=sin^{2}(7.775)=0.1353^{2}\\\hspace{1cm}=0.0183



The sin of the parameters a, b and c

sin(a)=sin(68.8°)=0.9323sin(b)=sin(53.25°)=0.8013sin(c)=sin(46.5°)=0.7254sin(a)=sin(68.8°)=0.9323\\sin(b)=sin(53.25°)=0.8013\\sin(c)=sin(46.5°)=0.7254


Now

Using the Haversine formula to solve for havA, havB and havC

havA=0.31920.003470.80130.7254=0.5432havA=\frac{0.3192-0.00347}{0.8013*0.7254}=0.5432\\



havB=0.20080.003470.93230.7254=0.2416havB=\frac{0.2008-0.00347}{0.9323*0.7254}=0.2416



havC=0.15580.01830.93230.8013=0.1840havC=\frac{0.1558-0.0183}{0.9323*0.8013}=0.1840



havA=0.5432    0.5432=sin2(θ2)    0.5432=sin(θ2)    0.7370=sin(θ2)    sin1(0.7370)=θ2    47.4764=θ2    θ=94.95°A=94.95°havA=0.5432\\\implies0.5432=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.5432}=sin(\frac{\theta}{2})\\\implies0.7370=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.7370)=\frac{\theta}{2}\\\implies 47.4764=\frac{\theta}{2}\\\implies \theta=94.95° \\A=94.95°



havB=0.2416    0.2416=sin2(θ2)    0.2416=sin(θ2)    0.4915=sin(θ2)    sin1(0.4915)=θ2    29.44=θ2    θ=58.88°B=58.88°havB=0.2416\\\implies0.2416=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.2416}=sin(\frac{\theta}{2})\\\implies0.4915=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.4915)=\frac{\theta}{2}\\\implies 29.44=\frac{\theta}{2}\\\implies \theta=58.88° \\B=58.88°




havC=0.1840    0.1840=sin2(θ2)    0.1840=sin(θ2)    0.4289=sin(θ2)    sin1(0.4289)=θ2    25.4011=θ2    θ=50.80°C=50.80°havC=0.1840\\\implies0.1840=sin^{2}(\frac{\theta}{2})\\\implies\sqrt{0.1840}=sin(\frac{\theta}{2})\\\implies0.4289=sin(\frac{\theta}{2})\\\implies sin^{-1}(0.4289)=\frac{\theta}{2}\\\implies 25.4011=\frac{\theta}{2}\\\implies \theta=50.80° \\C=50.80°




(2) We have a right spherical triangle with

c=69°25,B=63°25,A=90°c=69°25`, B=63°25`, A=90°


In the first

Sin(c)=tan(b)tan(90B)Sin(c)=tan(b) * tan(90-B)

sin(c)=tan(b)cot(B)tan(b)=sin(c)cot(B)=sin(c)tan(B)\therefore sin(c)=tan(b) * cot(B)\\\therefore tan(b)=\frac{sin(c)}{cot(B)}=sin(c) * tan(B)

=sin(69.42)tan(63.42)=1.8711=sin(69.42)-tan(63.42)\\=1.8711

tan(b)=1.8711b=tan11.8711b=61.88\therefore tan(b)=1.8711\\b=tan^{-1}1.8711\\b=61.88



In the second

sin(90C)=cos(c)cos(90B)cos(C)=cos(c)sin(B)cos(C)=cos(69.42)sin(63.42)sin(90-C)=cos(c) * cos(90-B)\\\therefore cos(C)= cos(c) * sin(B)\\\therefore cos(C)=cos(69.42) * sin(63.42)

=0.3143=0.3143

C=cos10.3143C=71.68°C=cos^{-1}0.3143\\C=71.68°



In the third

sin(90B)=tan(c)tan(90a)cos(B)=tan(c)cot(a)cos(B)=tan(c)tan(a)tan(a)=tan(c)tan(B)sin(90-B)=tan(c) * tan(90-a)\\\therefore cos(B)=tan(c) * cot(a)\\\therefore cos(B)=\frac{tan(c)}{tan(a)}\\\therefore tan(a)=\frac{tan(c)}{tan(B)}

=tan(69.42)cos(63.42)=2.66330.4474=5.9528=\frac{tan(69.42)}{cos(63.42)}=\frac{2.6633}{0.4474}=5.9528


a=tan1(5.9528)a=80.46°a=tan^{-1}(5.9528)\\a=80.46°



(3) we shall calculate the Area of the spherical triangle in (1) and (2)

To calculate the Area for (1)

Using the formula

A=πR2E180A=\frac{\pi R^{2} E}{180}

Where E is the excess and we have

E=A+B+C180°E= A+B+C - 180°

To calculate the Excess for question (1)

E=94.95°+58.88°+50.80°180°E=24.63E=94.95°+58.88°+50.80° - 180°\\E=24.63


Now

A=(3.142)(30)2(24.63)180A=\frac{(3.142) (30)^{2} (24.63)}{180}


A=(3.142)(900)(24.63)180A=\frac{(3.142) (900) (24.63)}{180}


A=69648.714180A=386.9A=\frac{69648.714}{180}\\A=386.9


Also, for question (2)

E=90°+63.42°+71.68°180°E=45.1E=90°+63.42°+71.68°-180°\\E=45.1


A=πR2E180A=\frac{\pi R^{2} E}{180}


A=(3.142)(30)2(45.1)180A=\frac{(3.142) (30)^{2} (45.1)}{180}


A=(3.142)(900)(45.1)180A=\frac{(3.142) (900) (45.1)}{180}


A=127533.78180A=708.521A=\frac{127533.78}{180}\\A=708.521







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS