1.
f(x)=x3−641−x,x∈R
x3−64=0
(x−4)(x2+x+16)=0
x=4
x→4−limf(x)=x→4−limx3−641−x
=x→4−lim(x−4)(x2+x+16)1−x=∞
x→4+limf(x)=x→4+limx3−641−x
=x→4+lim(x−4)(x2+x+16)1−x=−∞
Vertical asympote: x=4.
2.
f(x)=x2+17x+2,x∈R
x2+1>0,x∈R There is no vertical asymptote.
Comments
Leave a comment