Answer to Question #236202 in Math for Fia

Question #236202

Determine the Vertical Asymptote

f(x) = 1-x / x^3 -64

f(x) = 7x + 2/ x^2+1


1
Expert's answer
2021-09-12T23:52:40-0400

1.


f(x)=1xx364,xRf(x)=\dfrac{1-x}{x^3-64}, x\in \R

x3640x^3-64\not=0

(x4)(x2+x+16)0(x-4)(x^2+x+16)\not=0

x4x\not=4

limx4f(x)=limx41xx364\lim\limits_{x\to4^-}f(x)=\lim\limits_{x\to4^-}\dfrac{1-x}{x^3-64}

=limx41x(x4)(x2+x+16)==\lim\limits_{x\to4^-}\dfrac{1-x}{(x-4)(x^2+x+16)}=\infin


limx4+f(x)=limx4+1xx364\lim\limits_{x\to4^+}f(x)=\lim\limits_{x\to4^+}\dfrac{1-x}{x^3-64}

=limx4+1x(x4)(x2+x+16)==\lim\limits_{x\to4^+}\dfrac{1-x}{(x-4)(x^2+x+16)}=-\infin



Vertical asympote: x=4.x=4.


2.


f(x)=7x+2x2+1,xRf(x)=\dfrac{7x+2}{x^2+1}, x\in \R

x2+1>0,xRx^2+1>0, x\in\R

There is no vertical asymptote.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment