Question #218193

the marks scored by five students in a test of statistics carrying 100 marks are 50, 60, 50, 60 and 40. A simple random sample of size 4 draws without replacement construct the sampling distribution of sample mean and find the standard error of the sample mean?


1
Expert's answer
2021-07-19T05:47:21-0400

We have population values 50,60,50,60,40,50,60,50,60,40, population size N=5,N=5, and sample size n=4.n=4. Thus, the number of possible samples which can be drawn without replacement is



(54)=5\dbinom{5}{4}=5




mean=μ=50+60+50+60+405=52mean=\mu=\dfrac{50+60+50+60+40}{5}=52

Variance=σ2Variance=\sigma^2

=15((5052)2+(6052)2+(5052)2=\dfrac{1}{5}((50-52)^2+(60-52)^2+(50-52)^2

+(6052)2+(4052)2)=56+(60-52)^2+(40-52)^2)=56

NoSampleMean1(50,60,50,60)552(50,60,50,40)503(50,60,60,40)52.54(50,50,60,40)505(60,50,60,40)52.5\def\arraystretch{1.5} \begin{array}{c:c:c} No & Sample & Mean \\ \hline 1 & (50, 60, 50, 60) & 55 \\ \hdashline 2 & (50, 60, 50, 40) & 50 \\ \hdashline 3 & (50, 60, 60, 40) & 52.5 \\ \hdashline 4 & (50, 50, 60, 40) & 50 \\ \hdashline 5 & (60, 50,60,40) & 52.5 \\ \hdashline \end{array}


The sampling distribution of the sample mean xˉ\bar{x} and its mean and standard deviation are:


xˉff(xˉ)xˉf(xˉ)xˉ2f(xˉ)5022/520100052.522/5211102.55511/511605Total51522707.5\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:} \bar{x} & f & f(\bar{x})& \bar{x}f(\bar{x})& \bar{x}^2f(\bar{x}) \\ \hline 50 & 2 & 2/5 & 20 & 1000 \\ \hdashline 52.5 & 2 & 2/5 & 21 & 1102.5 \\ \hdashline 55 & 1 & 1/5 & 11 & 605 \\ \hdashline Total & 5 & 1 & 52 & 2707.5 \\ \hdashline \end{array}

E(Xˉ)=xˉf(xˉ)=52E(\bar{X})=\sum\bar{x}f(\bar{x})=52

Var(Xˉ)=xˉ2f(xˉ)(xˉf(xˉ))2Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2

=2707.5522=3.5=2707.5-52^2=3.5

E(Xˉ)=52=μE(\bar{X})=52=\mu

Var(Xˉ)=3.5=σ2n(NnN1)=564(5451)Var(\bar{X})=3.5=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{56}{4}(\dfrac{5-4}{5-1})




SE=sn=3.540.9354SE=\dfrac{s}{\sqrt{n}}=\dfrac{\sqrt{3.5}}{\sqrt{4}}\approx0.9354


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS