Expand Fourier series f(x)=cos x limit -pi/2 to pi/2
"a_0=\\dfrac{1}{L}\\displaystyle\\int_{-L}^{L}f(x)dx"
"a_n=\\dfrac{1}{L}\\displaystyle\\int_{-L}^{L}f(x)\\cos (\\dfrac{n\\pi x}{L})dx"
"b_n=\\dfrac{1}{L}\\displaystyle\\int_{-L}^{L}f(x)\\sin(\\dfrac{n\\pi x}{L})dx"
"a_0=\\dfrac{2}{\\pi}\\displaystyle\\int_{-\\pi\/2}^{\\pi\/2}\\cos x dx=\\dfrac{2}{\\pi}\\big[\\sin x\\big]\\begin{matrix}\n \\pi\/2 \\\\\n - \\pi\/2\n\\end{matrix}=\\dfrac{4}{\\pi}"
"a_n=\\dfrac{2}{\\pi}\\displaystyle\\int_{-\\pi\/2}^{\\pi\/2}\\cos x\\cos (2nx)dx"
"=\\dfrac{2}{\\pi}\\big[-\\dfrac{\\cos((2n+1)x)}{2(2n+1)}-\\dfrac{\\cos((2n-1)x)}{2(2n-1)}\\big]\\begin{matrix}\n \\pi\/2 \\\\\n - \\pi\/2\n\\end{matrix}=0"
"=\\dfrac{2}{\\pi}\\big[\\dfrac{(-1)^n}{2n+1}-\\dfrac{(-1)^n}{2n-1}\\big]=\\dfrac{4(-1)^{n+1}}{\\pi(4n^2-1)}"
"f(x)=\\dfrac{2}{\\pi}+\\displaystyle\\sum_{n=1}^{\\infin}\\big(\\dfrac{4(-1)^{n+1}}{\\pi(4n^2-1)}\\cos (2nx)\\big)"
Comments
Leave a comment