Question #201556

Expand Fourier series f(x)=cos x limit -pi/2 to pi/2


1
Expert's answer
2021-06-02T12:33:43-0400
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x)=\dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{\infin}\bigg(a_n\cos (\dfrac{n\pi x}{L})+b_n\sin (\dfrac{n\pi x}{L})\bigg)

a0=1LLLf(x)dxa_0=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)dx

an=1LLLf(x)cos(nπxL)dxa_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\cos (\dfrac{n\pi x}{L})dx

bn=1LLLf(x)sin(nπxL)dxb_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin(\dfrac{n\pi x}{L})dx

a0=2ππ/2π/2cosxdx=2π[sinx]π/2π/2=4πa_0=\dfrac{2}{\pi}\displaystyle\int_{-\pi/2}^{\pi/2}\cos x dx=\dfrac{2}{\pi}\big[\sin x\big]\begin{matrix} \pi/2 \\ - \pi/2 \end{matrix}=\dfrac{4}{\pi}

an=2ππ/2π/2cosxcos(2nx)dxa_n=\dfrac{2}{\pi}\displaystyle\int_{-\pi/2}^{\pi/2}\cos x\cos (2nx)dx

=2π[cos((2n+1)x)2(2n+1)cos((2n1)x)2(2n1)]π/2π/2=0=\dfrac{2}{\pi}\big[-\dfrac{\cos((2n+1)x)}{2(2n+1)}-\dfrac{\cos((2n-1)x)}{2(2n-1)}\big]\begin{matrix} \pi/2 \\ - \pi/2 \end{matrix}=0

=2π[(1)n2n+1(1)n2n1]=4(1)n+1π(4n21)=\dfrac{2}{\pi}\big[\dfrac{(-1)^n}{2n+1}-\dfrac{(-1)^n}{2n-1}\big]=\dfrac{4(-1)^{n+1}}{\pi(4n^2-1)}


bn=2ππ/2π/2sinxcos(2nx)dx=0b_n=\dfrac{2}{\pi}\displaystyle\int_{-\pi/2}^{\pi/2}\sin x\cos (2nx)dx=0

f(x)=2π+n=1(4(1)n+1π(4n21)cos(2nx))f(x)=\dfrac{2}{\pi}+\displaystyle\sum_{n=1}^{\infin}\big(\dfrac{4(-1)^{n+1}}{\pi(4n^2-1)}\cos (2nx)\big)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS