Question #142697
Let a1, a2, a3, a4, a5 be an arithmetic progression with common difference d such that cosd = √0,6. Find cos^2(a3) given that tga1tga2 + tga2tga3 + tga3tga4 + tga4tg5 = 11.
1
Expert's answer
2020-11-09T20:43:01-0500


a2=a1+d,a3=a2+d=a1+2d,a_2=a_1+d, a_3=a_2+d=a_1+2d,

a4=a3+d=a1+3d,a5=a4+d=a1+4da_4=a_3+d=a_1+3d, a_5=a_4+d=a_1+4d

tan(a2a1)=tana2tana11+tana1tana2\tan (a_2-a_1)=\dfrac{\tan a_2-\tan a_1}{1+\tan a_1\tan a_2}

tana1tana2=tana2tana1tan(d)1\tan a_1\tan a_2=\dfrac{\tan a_2-\tan a_1}{\tan(d)}-1

tana2tana3=tana3tana2tan(d)1\tan a_2\tan a_3=\dfrac{\tan a_3-\tan a_2}{\tan(d)}-1

tana3tana4=tana4tana3tan(d)1\tan a_3\tan a_4=\dfrac{\tan a_4-\tan a_3}{\tan(d)}-1

tana4tana5=tana5tana4tan(d)1\tan a_4\tan a_5=\dfrac{\tan a_5-\tan a_4}{\tan(d)}-1


tana1tana2+tana2tana3+\tan a_1\tan a_2+\tan a_2\tan a_3+

+tana3tana4+tana4tana5=+\tan a_3\tan a_4+\tan a_4\tan a_5=


=tana2tana1tan(d)1+tana3tana2tan(d)1+=\dfrac{\tan a_2-\tan a_1}{\tan(d)}-1+\dfrac{\tan a_3-\tan a_2}{\tan(d)}-1+

+tana4tana3tan(d)1+tana5tana4tan(d)1+\dfrac{\tan a_4-\tan a_3}{\tan(d)}-1+\dfrac{\tan a_5-\tan a_4}{\tan(d)}-1

Then


tana2tana1tan(d)1+tana3tana2tan(d)1+\dfrac{\tan a_2-\tan a_1}{\tan(d)}-1+\dfrac{\tan a_3-\tan a_2}{\tan(d)}-1+

+tana4tana3tan(d)1+tana5tana4tan(d)1=11+\dfrac{\tan a_4-\tan a_3}{\tan(d)}-1+\dfrac{\tan a_5-\tan a_4}{\tan(d)}-1=11

tana5tana1=15tan(d)\tan a_5-\tan a_1=15\tan(d)

sin(a3+2d)cos(a3+2d)sin(a32d)cos(a32d)=15tan(d)\dfrac{\sin(a_3+2d)}{\cos(a_3+2d)}-\dfrac{\sin(a_3-2d)}{\cos(a_3-2d)}=15\tan(d)

sin(a3+2d)cos(a32d)cos(a3+2d)sin(a32d)cos(a3+2d)cos(a32d)=\dfrac{\sin(a_3+2d)\cos(a_3-2d)-\cos(a_3+2d)\sin(a_3-2d)}{\cos(a_3+2d)\cos(a_3-2d)}=

=15tan(d)=15\tan(d)

sin(a3+2da3+2d)12(cos(4d)+cos(2a3))=15tan(d)\dfrac{\sin(a_3+2d-a_3+2d)}{\dfrac{1}{2}\big(\cos(4d)+\cos(2a_3)\big)}=15\tan(d)

cos(4d)+cos(2a3)=2sin(4d)15tan(d)\cos(4d)+\cos(2a_3)=\dfrac{2\sin(4d)}{15\tan(d)}

cos(2a3)=2sin(4d)15tan(d)cos(4d)\cos(2a_3)=\dfrac{2\sin(4d)}{15\tan(d)}-\cos(4d)

2cos2(a3)1=2sin(4d)15tan(d)cos(4d)2\cos^2(a_3)-1=\dfrac{2\sin(4d)}{15\tan(d)}-\cos(4d)

2cos2(a3)=2sin(4d)15tan(d)+(1cos(4d))2\cos^2(a_3)=\dfrac{2\sin(4d)}{15\tan(d)}+(1-\cos(4d))

2cos2(a3)=2sin(4d)15tan(d)+2sin2(2d)2\cos^2(a_3)=\dfrac{2\sin(4d)}{15\tan(d)}+2\sin^2(2d)

cos2(a3)=sin(4d)15tan(d)+sin2(2d)\cos^2(a_3)=\dfrac{\sin(4d)}{15\tan(d)}+\sin^2(2d)

cos(d)=0.6=>sin(d)=±1(0.6)2=±0.4\cos(d)=\sqrt{0.6}=>\sin(d)=\pm\sqrt{1-(\sqrt{0.6})^2}=\pm\sqrt{0.4}


Let sin(d)=0.4.\sin(d)=\sqrt{0.4}. Then


tan(d)=sin(d)cos(d)=0.40.6=23\tan(d)=\dfrac{\sin(d)}{\cos(d)}=\sqrt{\dfrac{0.4}{0.6}}=\sqrt{\dfrac{2}{3}}

cos(2d)=2cos2(2d)1=2(0.6)21=0.2\cos(2d)=2\cos^2(2d)-1=2(\sqrt{0.6})^2-1=0.2

sin(2d)=2sin(d)cos(d)=20.40.6=0.46\sin(2d)=2\sin(d)\cos(d)=2\sqrt{0.4}\sqrt{0.6}=0.4\sqrt{6}

sin(4d)=2sin(2d)cos(2d)=2(0.46)(0.2)=0.166\sin(4d)=2\sin(2d)\cos(2d)=2(0.4\sqrt{6})(0.2)=0.16\sqrt{6}

sin2(2d)=(0.46)2=0.96\sin^2(2d)=(0.4\sqrt{6})^2=0.96

cos2(a3)=0.1661523+0.96=0.992\cos^2(a_3)=\dfrac{0.16\sqrt{6}}{15\sqrt\dfrac{2}{3}{}}+0.96=0.992

Let sin(d)=0.4.\sin(d)=-\sqrt{0.4}. Then


tan(d)=sin(d)cos(d)=0.40.6=23\tan(d)=\dfrac{\sin(d)}{\cos(d)}=-\sqrt{\dfrac{0.4}{0.6}}=-\sqrt{\dfrac{2}{3}}

cos(2d)=2cos2(2d)1=2(0.6)21=0.2\cos(2d)=2\cos^2(2d)-1=2(\sqrt{0.6})^2-1=0.2

sin(2d)=2sin(d)cos(d)=20.40.6=0.46\sin(2d)=2\sin(d)\cos(d)=-2\sqrt{0.4}\sqrt{0.6}=-0.4\sqrt{6}

sin(4d)=2sin(2d)cos(2d)=2(0.46)(0.2)=0.166\sin(4d)=2\sin(2d)\cos(2d)=-2(0.4\sqrt{6})(0.2)=-0.16\sqrt{6}

sin2(2d)=(0.46)2=0.96\sin^2(2d)=(-0.4\sqrt{6})^2=0.96

cos2(a3)=0.1661523+0.96=0.992\cos^2(a_3)=\dfrac{-0.16\sqrt{6}}{-15\sqrt\dfrac{2}{3}{}}+0.96=0.992

cos2(a3)=0.992\cos^2(a_3)=0.992



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS