21 − 16 sin 2 ( x ) + 8 cos ( x ) 16 cos 2 ( x ) − 29 − 8 15 sin ( x ) = 2 \dfrac{21-16\sin^2(x)+8\cos(x)}{16\cos^2(x)-29-8\sqrt{15}\sin(x)}=2 16 cos 2 ( x ) − 29 − 8 15 sin ( x ) 21 − 16 sin 2 ( x ) + 8 cos ( x ) = 2 Let v = cos ( x ) , u = sin ( x ) . v=\cos(x), u=\sin(x). v = cos ( x ) , u = sin ( x ) . Then
u 2 + v 2 = 1 u^2+v^2=1 u 2 + v 2 = 1
16 v 2 − 29 − 8 15 u ≠ 0 16v^2-29-8\sqrt{15}u\not=0 16 v 2 − 29 − 8 15 u = 0
21 − 16 u 2 + 8 v − 32 v 2 + 58 + 16 15 u = 0 21-16u^2+8v-32v^2+58+16\sqrt{15}u=0 21 − 16 u 2 + 8 v − 32 v 2 + 58 + 16 15 u = 0
( 16 v 2 + 8 v + 1 ) + 2 ( 16 u 2 + 8 15 u + 15 ) = 0 (16v^2+8v+1)+2(16u^2+8\sqrt{15}u+15)=0 ( 16 v 2 + 8 v + 1 ) + 2 ( 16 u 2 + 8 15 u + 15 ) = 0
( 4 v + 1 ) 2 + 2 ( 4 u + 15 ) 2 = 0 (4v+1)^2+2(4u+\sqrt{15})^2=0 ( 4 v + 1 ) 2 + 2 ( 4 u + 15 ) 2 = 0 Then
{ 4 v + 1 = 0 4 u + 15 = 0 = > { v = − 1 4 u = − 15 4 \begin{cases}
4v+1=0 \\
4u+\sqrt{15}=0
\end{cases}=>\begin{cases}
v=-\dfrac{1}{4} \\
u=-\dfrac{\sqrt{15}}{4}
\end{cases} { 4 v + 1 = 0 4 u + 15 = 0 => ⎩ ⎨ ⎧ v = − 4 1 u = − 4 15 Check
u 2 + v 2 = ( − 1 4 ) 2 + ( − 15 4 ) 2 = 1 , T r u e u^2+v^2=(-\dfrac{1}{4})^2+(-\dfrac{\sqrt{15}}{4})^2=1, True u 2 + v 2 = ( − 4 1 ) 2 + ( − 4 15 ) 2 = 1 , T r u e
16 v 2 − 29 − 8 15 u = 16v^2-29-8\sqrt{15}u= 16 v 2 − 29 − 8 15 u =
= 16 ( − 1 4 ) 2 − 29 − 8 15 ( − 15 4 ) = 1 − 29 + 30 = =16(-\dfrac{1}{4})^2-29-8\sqrt{15}(-\dfrac{\sqrt{15}}{4})=1-29+30= = 16 ( − 4 1 ) 2 − 29 − 8 15 ( − 4 15 ) = 1 − 29 + 30 =
= 2 ≠ 0 , T r u e =2\not=0, True = 2 = 0 , T r u e Hence
cos ( x ) = v = − 1 4 \cos(x)=v=-\dfrac{1}{4} cos ( x ) = v = − 4 1
7 cos ( x ) = − 7 4 = − 1.75 7\cos(x)=-\dfrac{7}{4}=-1.75 7 cos ( x ) = − 4 7 = − 1.75
Comments