Let "v=\\cos(x), u=\\sin(x)." Then
"16v^2-29-8\\sqrt{15}u\\not=0"
"21-16u^2+8v-32v^2+58+16\\sqrt{15}u=0"
"(16v^2+8v+1)+2(16u^2+8\\sqrt{15}u+15)=0"
"(4v+1)^2+2(4u+\\sqrt{15})^2=0"
Then
Check
"16v^2-29-8\\sqrt{15}u="
"=16(-\\dfrac{1}{4})^2-29-8\\sqrt{15}(-\\dfrac{\\sqrt{15}}{4})=1-29+30="
"=2\\not=0, True"
Hence
"\\cos(x)=v=-\\dfrac{1}{4}"
"7\\cos(x)=-\\dfrac{7}{4}=-1.75"
Comments
Leave a comment