Question #142690
Let 21 - 16sin^2(x) + 8cosx / 16cos^2(x) - 29 - 8√15sinx = 2. Find the largest value of 7cosx.
1
Expert's answer
2020-11-09T19:56:54-0500
2116sin2(x)+8cos(x)16cos2(x)29815sin(x)=2\dfrac{21-16\sin^2(x)+8\cos(x)}{16\cos^2(x)-29-8\sqrt{15}\sin(x)}=2

Let v=cos(x),u=sin(x).v=\cos(x), u=\sin(x). Then


u2+v2=1u^2+v^2=1

16v229815u016v^2-29-8\sqrt{15}u\not=0

2116u2+8v32v2+58+1615u=021-16u^2+8v-32v^2+58+16\sqrt{15}u=0

(16v2+8v+1)+2(16u2+815u+15)=0(16v^2+8v+1)+2(16u^2+8\sqrt{15}u+15)=0

(4v+1)2+2(4u+15)2=0(4v+1)^2+2(4u+\sqrt{15})^2=0

Then


{4v+1=04u+15=0=>{v=14u=154\begin{cases} 4v+1=0 \\ 4u+\sqrt{15}=0 \end{cases}=>\begin{cases} v=-\dfrac{1}{4} \\ u=-\dfrac{\sqrt{15}}{4} \end{cases}

Check


u2+v2=(14)2+(154)2=1,Trueu^2+v^2=(-\dfrac{1}{4})^2+(-\dfrac{\sqrt{15}}{4})^2=1, True

16v229815u=16v^2-29-8\sqrt{15}u=

=16(14)229815(154)=129+30==16(-\dfrac{1}{4})^2-29-8\sqrt{15}(-\dfrac{\sqrt{15}}{4})=1-29+30=

=20,True=2\not=0, True

Hence

cos(x)=v=14\cos(x)=v=-\dfrac{1}{4}

7cos(x)=74=1.757\cos(x)=-\dfrac{7}{4}=-1.75




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS