16cos2(x)−29−815sin(x)21−16sin2(x)+8cos(x)=2 Let v=cos(x),u=sin(x). Then
u2+v2=1
16v2−29−815u=0
21−16u2+8v−32v2+58+1615u=0
(16v2+8v+1)+2(16u2+815u+15)=0
(4v+1)2+2(4u+15)2=0 Then
{4v+1=04u+15=0=>⎩⎨⎧v=−41u=−415 Check
u2+v2=(−41)2+(−415)2=1,True
16v2−29−815u=
=16(−41)2−29−815(−415)=1−29+30=
=2=0,True Hence
cos(x)=v=−41
7cos(x)=−47=−1.75
Comments