Let v 0 & θ v_0\&\theta v 0 & θ is the initial velocity and angle of the projectile respectively and for continence choose mass m = 1 k g m=1kg m = 1 k g .
As, the particle moves in the restive medium, thus the net force acting on the particle is ,
F = m a y = − k v y − m g ⟹ a y = − k v y − g ( □ ) F=ma_y=-kv_y-mg\implies a_y=-kv_y-g \: (\square) F = m a y = − k v y − m g ⟹ a y = − k v y − g ( □ ) Thus,
d v y d t = − k v y − g ⟹ d v y k v y + g = − d t ⟹ ∫ d v y k v y + g = ∫ − d t ⟹ l n ( k v y + g ) k = − t + c \frac{dv_y}{dt}=-kv_y-g\\
\implies \frac{dv_y}{kv_y+g}=-dt\\
\implies \int \frac{dv_y}{kv_y+g}=\int-dt\\
\implies \frac{ ln(kv_y+g)}{k}=-t+c d t d v y = − k v y − g ⟹ k v y + g d v y = − d t ⟹ ∫ k v y + g d v y = ∫ − d t ⟹ k l n ( k v y + g ) = − t + c since, at t = 0 , v y = u = v 0 sin ( θ ) t=0,v_y=u=v_0\sin(\theta) t = 0 , v y = u = v 0 sin ( θ ) , which implies
c = l n ( k v 0 sin ( θ ) + g ) k ⟹ l n ( k v y + g k v 0 sin ( θ ) + g ) = − k t ⟹ v y = ( k v 0 sin ( θ ) + g ) e − k t − g k ( ♣ ) c=\frac{ ln(kv_0\sin(\theta)+g)}{k}\\
\implies ln\bigg(\frac{kv_y+g}{kv_0\sin(\theta)+g}\bigg)=-kt\\
\implies v_y=\frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} \hspace{1cm}(\clubs) c = k l n ( k v 0 sin ( θ ) + g ) ⟹ l n ( k v 0 sin ( θ ) + g k v y + g ) = − k t ⟹ v y = k ( k v 0 sin ( θ ) + g ) e − k t − g ( ♣ ) When v y = 0 , t = T a v_y=0,t=T_a v y = 0 , t = T a ,particle reaches maximum height(time of ascent), thus from ( ♣ ) (\clubs) ( ♣ ) we get,
( k v 0 sin ( θ ) + g ) e − k T a − g k = 0 ⟹ T a = − 1 k l n ( g k v 0 sin ( θ ) + g ) ( ♠ ) \frac{(kv_0\sin(\theta)+g)e^{-kT_a} -g}{k}=0\\
\implies T_a=-\frac{1}{k}ln\bigg(\frac{g}{kv_0\sin(\theta)+g}\bigg)\hspace{1cm}(\spades) k ( k v 0 sin ( θ ) + g ) e − k T a − g = 0 ⟹ T a = − k 1 l n ( k v 0 sin ( θ ) + g g ) ( ♠ ) Now, we will calculate the height( H ) (H) ( H ) at t = T a t=T_a t = T a ,thus from ( ♣ ) (\clubs) ( ♣ ) we get,
d y d t = ( k v 0 sin ( θ ) + g ) e − k t − g k ⟹ ∫ 0 H d y = ∫ 0 T a ( k v 0 sin ( θ ) + g ) e − k t − g k d t ⟹ ( k v 0 sin ( θ ) + g ) e − k t − k 2 − g t k ∣ 0 T a = H ⟹ ( ( k v 0 sin ( θ ) + g ) e − k T a − k 2 − g T a k ) − ( k v 0 sin ( θ ) + g − k 2 ) = H ⟹ u k − g k T a = H ( ⋆ ) \frac{dy}{dt}=\frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} \\
\implies \int_{0}^{H} dy =\int_{0}^{T_a} \frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} dt\\
\implies \frac{(kv_0\sin(\theta)+g)e^{-kt} }{-k^2}-\frac{gt}{k} \bigg|_{0}^{T_a}=H\\
\implies \bigg(\frac{(kv_0\sin(\theta)+g)e^{-kT_a} }{-k^2}-\frac{gT_a}{k}\bigg)-\\\bigg( \frac{kv_0\sin(\theta)+g }{-k^2}\bigg)=H\\
\implies \frac{u }{k} -\frac{g}{k}T_a=H\hspace{1cm}(\star)\\ d t d y = k ( k v 0 sin ( θ ) + g ) e − k t − g ⟹ ∫ 0 H d y = ∫ 0 T a k ( k v 0 sin ( θ ) + g ) e − k t − g d t ⟹ − k 2 ( k v 0 sin ( θ ) + g ) e − k t − k g t ∣ ∣ 0 T a = H ⟹ ( − k 2 ( k v 0 sin ( θ ) + g ) e − k T a − k g T a ) − ( − k 2 k v 0 sin ( θ ) + g ) = H ⟹ k u − k g T a = H ( ⋆ ) Now, will calculate time of descent T d T_d T d . Clearly, the acceleration of the particle will be
a y = g − k v y ⟹ d v y d t = g − k v y ⟹ d v y g − k v y = d t ⟹ 1 k l n ( k v y − g g ) = − t ⟹ v y = g k ( 1 − e − k t ) ( ⋆ ⋆ ) a_y=g-kv_y \\
\implies \frac{dv_y}{dt}=g-kv_y\\
\implies \frac{dv_y}{g-kv_y}=dt\\
\implies\frac{1}{k} ln(\frac{kv_y-g}{g})=-t\\
\implies v_y=\frac{g}{k}(1-e^{-kt}) \hspace{1cm}(\star \star) a y = g − k v y ⟹ d t d v y = g − k v y ⟹ g − k v y d v y = d t ⟹ k 1 l n ( g k v y − g ) = − t ⟹ v y = k g ( 1 − e − k t ) ( ⋆ ⋆ ) Using the above result and ( ⋆ ) (\star) ( ⋆ ) and after further calculation we will get,
H = g k ∫ 0 T d ( 1 − e − k t ) d t ⟹ u k − g k T a = g k ( T d + e − k T d k − 1 k ) ⟹ T a + T d = T f l i g h t = u g + 1 k − e − k T d k ⟹ T f l i g h t − 2 T a = u g + 1 k − e − k T d k − 2 k l n ( 1 + k u g ) ( † ) H=\frac{g}{k} \int_{0}^{T_d} (1-e^{-kt})dt\\
\implies \frac{u }{k} -\frac{g}{k}T_a=\frac{g}{k} (T_d+\frac{e^{-kT_d}}{k} -\frac{1}{k} )\\
\implies T_a +T_d=T_{flight}=\frac{u}{g} +\frac{1}{k} -\frac{e^{-kT_d}}{k}\\
\implies T_{flight}-2T_a=\frac{u}{g} +\frac{1}{k} -\frac{e^{-kT_d}}{k}-\\\frac{2}{k}ln(1+\frac{ku}{g})\hspace{1cm}(\dag) H = k g ∫ 0 T d ( 1 − e − k t ) d t ⟹ k u − k g T a = k g ( T d + k e − k T d − k 1 ) ⟹ T a + T d = T f l i g h t = g u + k 1 − k e − k T d ⟹ T f l i g h t − 2 T a = g u + k 1 − k e − k T d − k 2 l n ( 1 + g k u ) ( † ) Now, expanding up to second order we get,
l n ( 1 + k u g ) = k u g − 1 2 ( k u g ) 2 ln(1+\frac{ku}{g})=\frac{ku}{g}-\frac{1}{2}(\frac{ku}{g})^2 l n ( 1 + g k u ) = g k u − 2 1 ( g k u ) 2 On plugin this result to ( † ) (\dag) ( † ) we get,
T f l i g h t − 2 T a = 1 k ( 1 − e − k T d ) + u g 2 ( k u − g ) ⟹ T f l i g h t − 2 T a > 0 ( ∵ 1 − e − k T d > 0 & k u − g ≥ 0 ) ⟹ T a < 1 2 T f l i g h t T_{flight}-2T_a=\frac{1}{k}(1-e^{-kT_d})+\frac{u}{g^2}(ku-g)\\
\implies T_{flight}-2T_a >0 \hspace{1cm}(\because 1-e^{-kT_d}>0\&ku-g\geq0)\\
\implies T_a<\frac{1}{2}T_{flight} T f l i g h t − 2 T a = k 1 ( 1 − e − k T d ) + g 2 u ( k u − g ) ⟹ T f l i g h t − 2 T a > 0 ( ∵ 1 − e − k T d > 0& k u − g ≥ 0 ) ⟹ T a < 2 1 T f l i g h t
Alternatively, from physical point of view, we can clearly see from ( □ ) (\square) ( □ ) and( ⋆ ⋆ ) (\star \star) ( ⋆ ⋆ ) that the rate of velocity more rapidly negative in ( ⋆ ⋆ ) (\star \star) ( ⋆ ⋆ ) than ( □ ) (\square) ( □ ) ,therefore it is obvious that T a < T d T_a<T_d T a < T d ,Hence the result.
Comments