Question #116463
show that in the motion of a heavy particle in a medium the resistance of which varies as the velocity, the greatest height abov the level of the point of projection is reached in less than half the total time of flight above that level.
1
Expert's answer
2020-05-20T19:16:34-0400

Let v0&θv_0\&\theta is the initial velocity and angle of the projectile respectively and for continence choose mass m=1kgm=1kg .


As, the particle moves in the restive medium, thus the net force acting on the particle is ,


F=may=kvymg    ay=kvyg()F=ma_y=-kv_y-mg\implies a_y=-kv_y-g \: (\square)

Thus,

dvydt=kvyg    dvykvy+g=dt    dvykvy+g=dt    ln(kvy+g)k=t+c\frac{dv_y}{dt}=-kv_y-g\\ \implies \frac{dv_y}{kv_y+g}=-dt\\ \implies \int \frac{dv_y}{kv_y+g}=\int-dt\\ \implies \frac{ ln(kv_y+g)}{k}=-t+c

since, at t=0,vy=u=v0sin(θ)t=0,v_y=u=v_0\sin(\theta) , which implies

c=ln(kv0sin(θ)+g)k    ln(kvy+gkv0sin(θ)+g)=kt    vy=(kv0sin(θ)+g)ektgk()c=\frac{ ln(kv_0\sin(\theta)+g)}{k}\\ \implies ln\bigg(\frac{kv_y+g}{kv_0\sin(\theta)+g}\bigg)=-kt\\ \implies v_y=\frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} \hspace{1cm}(\clubs)

When vy=0,t=Tav_y=0,t=T_a ,particle reaches maximum height(time of ascent), thus from ()(\clubs) we get,

(kv0sin(θ)+g)ekTagk=0    Ta=1kln(gkv0sin(θ)+g)()\frac{(kv_0\sin(\theta)+g)e^{-kT_a} -g}{k}=0\\ \implies T_a=-\frac{1}{k}ln\bigg(\frac{g}{kv_0\sin(\theta)+g}\bigg)\hspace{1cm}(\spades)

Now, we will calculate the height(H)(H) at t=Tat=T_a ,thus from ()(\clubs) we get,

dydt=(kv0sin(θ)+g)ektgk    0Hdy=0Ta(kv0sin(θ)+g)ektgkdt    (kv0sin(θ)+g)ektk2gtk0Ta=H    ((kv0sin(θ)+g)ekTak2gTak)(kv0sin(θ)+gk2)=H    ukgkTa=H()\frac{dy}{dt}=\frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} \\ \implies \int_{0}^{H} dy =\int_{0}^{T_a} \frac{(kv_0\sin(\theta)+g)e^{-kt} -g}{k} dt\\ \implies \frac{(kv_0\sin(\theta)+g)e^{-kt} }{-k^2}-\frac{gt}{k} \bigg|_{0}^{T_a}=H\\ \implies \bigg(\frac{(kv_0\sin(\theta)+g)e^{-kT_a} }{-k^2}-\frac{gT_a}{k}\bigg)-\\\bigg( \frac{kv_0\sin(\theta)+g }{-k^2}\bigg)=H\\ \implies \frac{u }{k} -\frac{g}{k}T_a=H\hspace{1cm}(\star)\\

Now, will calculate time of descent TdT_d . Clearly, the acceleration of the particle will be

ay=gkvy    dvydt=gkvy    dvygkvy=dt    1kln(kvygg)=t    vy=gk(1ekt)()a_y=g-kv_y \\ \implies \frac{dv_y}{dt}=g-kv_y\\ \implies \frac{dv_y}{g-kv_y}=dt\\ \implies\frac{1}{k} ln(\frac{kv_y-g}{g})=-t\\ \implies v_y=\frac{g}{k}(1-e^{-kt}) \hspace{1cm}(\star \star)

Using the above result and ()(\star) and after further calculation we will get,


H=gk0Td(1ekt)dt    ukgkTa=gk(Td+ekTdk1k)    Ta+Td=Tflight=ug+1kekTdk    Tflight2Ta=ug+1kekTdk2kln(1+kug)()H=\frac{g}{k} \int_{0}^{T_d} (1-e^{-kt})dt\\ \implies \frac{u }{k} -\frac{g}{k}T_a=\frac{g}{k} (T_d+\frac{e^{-kT_d}}{k} -\frac{1}{k} )\\ \implies T_a +T_d=T_{flight}=\frac{u}{g} +\frac{1}{k} -\frac{e^{-kT_d}}{k}\\ \implies T_{flight}-2T_a=\frac{u}{g} +\frac{1}{k} -\frac{e^{-kT_d}}{k}-\\\frac{2}{k}ln(1+\frac{ku}{g})\hspace{1cm}(\dag)

Now, expanding up to second order we get,

ln(1+kug)=kug12(kug)2ln(1+\frac{ku}{g})=\frac{ku}{g}-\frac{1}{2}(\frac{ku}{g})^2

On plugin this result to ()(\dag) we get,


Tflight2Ta=1k(1ekTd)+ug2(kug)    Tflight2Ta>0(1ekTd>0&kug0)    Ta<12TflightT_{flight}-2T_a=\frac{1}{k}(1-e^{-kT_d})+\frac{u}{g^2}(ku-g)\\ \implies T_{flight}-2T_a >0 \hspace{1cm}(\because 1-e^{-kT_d}>0\&ku-g\geq0)\\ \implies T_a<\frac{1}{2}T_{flight}

Alternatively, from physical point of view, we can clearly see from ()(\square) and()(\star \star) that the rate of velocity more rapidly negative in ()(\star \star) than ()(\square) ,therefore it is obvious that Ta<TdT_a<T_d ,Hence the result.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS