Let "X=" the number of S10X products, "Y=" the number of S10Y products.
"P=(79-3\\cdot8-2\\cdot 7-6)X+(67-2\\cdot8-2\\cdot 7-5)Y="
"=35X+32Y"
"X=0: 0\\leq Y \\leq{4000\\over 3}, P_{max}=42666.67"
"Y=0: 0\\leq X \\leq1500, P_{max}=52500"
"Y_2=-{2\\over 3}X+{4000\\over 3}"
"Y_1=Y_2:-{3\\over 2}X+2250=-{2\\over 3}X+{4000\\over 3}"
"{5\\over 6}X={2750\\over 3}"
"X=1100"
"0\\leq X\\le 1100: Y=-{2\\over 3}X+{4000\\over 3}"
"P=35X-{64\\over 3}X+{128000\\over 3}={41\\over 3}X+{128000\\over 3}"
"P_{max}={41\\over 3}(1100)+{128000\\over 3}=57700"
"P=35X-48X+72000=-13X+72000"
"P_{max}=-13(1100)+72000=57700"
If "X=1100,Y=600," we have the maximum profit
Comments
Leave a comment