f(x)=4g(x)=−4x+6h(x)=2x2+8x−3s1(x)=f(x)=4,∥s1∥2=4⋅4+4⋅4+4⋅4=48s2(x)=g(x)−∥s1∥2<g,s1>s1(x)=−4x+6−4810⋅4+6⋅4+2⋅4⋅4=−4x∥s2∥2=4⋅4+0⋅0+(−4)⋅(−4)=32s3(x)=h(x)−∥s1∥2<h,s1>s1(s)−∥s2∥2<h,s2>s2(x)==2x2+8x−3−48(−9)⋅4+(−3)⋅4+7⋅4⋅4−32−9⋅10+(−3)⋅6+7⋅2⋅(−4x)==2x2+16175x−34∥s3∥2=(2−16175+34)2+(−34)2+(2+16175−34)2=576111893Orthonormalbasis:e1=484=0.57735e2=32−4x=−0.707107xe3=5761118932x2+16175x−34=0.143496x2+0.784744x−0.095664
Comments