f ( x ) = 4 g ( x ) = − 4 x + 6 h ( x ) = 2 x 2 + 8 x − 3 s 1 ( x ) = f ( x ) = 4 , ∥ s 1 ∥ 2 = 4 ⋅ 4 + 4 ⋅ 4 + 4 ⋅ 4 = 48 s 2 ( x ) = g ( x ) − < g , s 1 > ∥ s 1 ∥ 2 s 1 ( x ) = − 4 x + 6 − 10 ⋅ 4 + 6 ⋅ 4 + 2 ⋅ 4 48 ⋅ 4 = − 4 x ∥ s 2 ∥ 2 = 4 ⋅ 4 + 0 ⋅ 0 + ( − 4 ) ⋅ ( − 4 ) = 32 s 3 ( x ) = h ( x ) − < h , s 1 > ∥ s 1 ∥ 2 s 1 ( s ) − < h , s 2 > ∥ s 2 ∥ 2 s 2 ( x ) = = 2 x 2 + 8 x − 3 − ( − 9 ) ⋅ 4 + ( − 3 ) ⋅ 4 + 7 ⋅ 4 48 ⋅ 4 − − 9 ⋅ 10 + ( − 3 ) ⋅ 6 + 7 ⋅ 2 32 ⋅ ( − 4 x ) = = 2 x 2 + 175 16 x − 4 3 ∥ s 3 ∥ 2 = ( 2 − 175 16 + 4 3 ) 2 + ( − 4 3 ) 2 + ( 2 + 175 16 − 4 3 ) 2 = 111893 576 O r t h o n o r m a l b a s i s : e 1 = 4 48 = 0.57735 e 2 = − 4 32 x = − 0.707107 x e 3 = 2 x 2 + 175 16 x − 4 3 111893 576 = 0.143496 x 2 + 0.784744 x − 0.095664 f\left( x \right) =4\\g\left( x \right) =-4x+6\\h\left( x \right) =2x^2+8x-3\\\\s_1\left( x \right) =f\left( x \right) =4,\left\| s_1 \right\| ^2=4\cdot 4+4\cdot 4+4\cdot 4=48\\s_2\left( x \right) =g\left( x \right) -\frac{<g,s_1>}{\left\| s_1 \right\| ^2}s_1\left( x \right) =-4x+6-\frac{10\cdot 4+6\cdot 4+2\cdot 4}{48}\cdot 4=-4x\\\left\| s_2 \right\| ^2=4\cdot 4+0\cdot 0+\left( -4 \right) \cdot \left( -4 \right) =32\\s_3\left( x \right) =h\left( x \right) -\frac{<h,s_1>}{\left\| s_1 \right\| ^2}s_1\left( s \right) -\frac{<h,s_2>}{\left\| s_2 \right\| ^2}s_2\left( x \right) =\\=2x^2+8x-3-\frac{\left( -9 \right) \cdot 4+\left( -3 \right) \cdot 4+7\cdot 4}{48}\cdot 4-\frac{-9\cdot 10+\left( -3 \right) \cdot 6+7\cdot 2}{32}\cdot \left( -4x \right) =\\=2x^2+\frac{175}{16}x-\frac{4}{3}\\\left\| s_3 \right\| ^2=\left( 2-\frac{175}{16}+\frac{4}{3} \right) ^2+\left( -\frac{4}{3} \right) ^2+\left( 2+\frac{175}{16}-\frac{4}{3} \right) ^2=\frac{111893}{576}\\Orthonormal\,\,basis:\\e_1=\frac{4}{\sqrt{48}}=0.57735\\e_2=\frac{-4}{\sqrt{32}}x=-0.707107x\\e_3=\frac{2x^2+\frac{175}{16}x-\frac{4}{3}}{\sqrt{\frac{111893}{576}}}=0.143496x^2+0.784744x-0.095664 f ( x ) = 4 g ( x ) = − 4 x + 6 h ( x ) = 2 x 2 + 8 x − 3 s 1 ( x ) = f ( x ) = 4 , ∥ s 1 ∥ 2 = 4 ⋅ 4 + 4 ⋅ 4 + 4 ⋅ 4 = 48 s 2 ( x ) = g ( x ) − ∥ s 1 ∥ 2 < g , s 1 > s 1 ( x ) = − 4 x + 6 − 48 10 ⋅ 4 + 6 ⋅ 4 + 2 ⋅ 4 ⋅ 4 = − 4 x ∥ s 2 ∥ 2 = 4 ⋅ 4 + 0 ⋅ 0 + ( − 4 ) ⋅ ( − 4 ) = 32 s 3 ( x ) = h ( x ) − ∥ s 1 ∥ 2 < h , s 1 > s 1 ( s ) − ∥ s 2 ∥ 2 < h , s 2 > s 2 ( x ) = = 2 x 2 + 8 x − 3 − 48 ( − 9 ) ⋅ 4 + ( − 3 ) ⋅ 4 + 7 ⋅ 4 ⋅ 4 − 32 − 9 ⋅ 10 + ( − 3 ) ⋅ 6 + 7 ⋅ 2 ⋅ ( − 4 x ) = = 2 x 2 + 16 175 x − 3 4 ∥ s 3 ∥ 2 = ( 2 − 16 175 + 3 4 ) 2 + ( − 3 4 ) 2 + ( 2 + 16 175 − 3 4 ) 2 = 576 111893 O r t h o n or ma l ba s i s : e 1 = 48 4 = 0.57735 e 2 = 32 − 4 x = − 0.707107 x e 3 = 576 111893 2 x 2 + 16 175 x − 3 4 = 0.143496 x 2 + 0.784744 x − 0.095664
Comments