Question #327254

Let f(x)=4 g(x)=-4x+6 h(x)=2x^2+8x -3 inner product <p,q>=p(-1) q(-1) + P(0)q(0). +p(1)q(1) .usw gramschmidt to determine orthonormal basis for subspace p2 spanned by polynomials f(x) g(x) h(x)

1
Expert's answer
2022-04-14T04:27:02-0400

f(x)=4g(x)=4x+6h(x)=2x2+8x3s1(x)=f(x)=4,s12=44+44+44=48s2(x)=g(x)<g,s1>s12s1(x)=4x+6104+64+24484=4xs22=44+00+(4)(4)=32s3(x)=h(x)<h,s1>s12s1(s)<h,s2>s22s2(x)==2x2+8x3(9)4+(3)4+74484910+(3)6+7232(4x)==2x2+17516x43s32=(217516+43)2+(43)2+(2+1751643)2=111893576Orthonormalbasis:e1=448=0.57735e2=432x=0.707107xe3=2x2+17516x43111893576=0.143496x2+0.784744x0.095664f\left( x \right) =4\\g\left( x \right) =-4x+6\\h\left( x \right) =2x^2+8x-3\\\\s_1\left( x \right) =f\left( x \right) =4,\left\| s_1 \right\| ^2=4\cdot 4+4\cdot 4+4\cdot 4=48\\s_2\left( x \right) =g\left( x \right) -\frac{<g,s_1>}{\left\| s_1 \right\| ^2}s_1\left( x \right) =-4x+6-\frac{10\cdot 4+6\cdot 4+2\cdot 4}{48}\cdot 4=-4x\\\left\| s_2 \right\| ^2=4\cdot 4+0\cdot 0+\left( -4 \right) \cdot \left( -4 \right) =32\\s_3\left( x \right) =h\left( x \right) -\frac{<h,s_1>}{\left\| s_1 \right\| ^2}s_1\left( s \right) -\frac{<h,s_2>}{\left\| s_2 \right\| ^2}s_2\left( x \right) =\\=2x^2+8x-3-\frac{\left( -9 \right) \cdot 4+\left( -3 \right) \cdot 4+7\cdot 4}{48}\cdot 4-\frac{-9\cdot 10+\left( -3 \right) \cdot 6+7\cdot 2}{32}\cdot \left( -4x \right) =\\=2x^2+\frac{175}{16}x-\frac{4}{3}\\\left\| s_3 \right\| ^2=\left( 2-\frac{175}{16}+\frac{4}{3} \right) ^2+\left( -\frac{4}{3} \right) ^2+\left( 2+\frac{175}{16}-\frac{4}{3} \right) ^2=\frac{111893}{576}\\Orthonormal\,\,basis:\\e_1=\frac{4}{\sqrt{48}}=0.57735\\e_2=\frac{-4}{\sqrt{32}}x=-0.707107x\\e_3=\frac{2x^2+\frac{175}{16}x-\frac{4}{3}}{\sqrt{\frac{111893}{576}}}=0.143496x^2+0.784744x-0.095664


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS