The first four Hermite polynomials are f(x) = 1,g(x) = 2t, h(x) = 2−4t +t², and p(x) =
6−18t +9t²−t³
. Show that these polynomials form a basis for P3.
α1f+α2g+α3h+α4p=0⇒⇒α1+2α2t+α3(2−4t+t2)+α4(6−18t+9t2−t3)=0⇒⇒{α1+2α3+6α4=02α2−4α3−18α4=0a3+9α4=0−α4=0⇒{α4=0α3=02α2=0α1=0⇒α1=α2=α3=α4=0The system is linearly independent.Since the dimension of P3 is 4,the system forms a basis\alpha _1f+\alpha _2g+\alpha _3h+\alpha _4p=0\Rightarrow \\\Rightarrow \alpha _1+2\alpha _2t+\alpha _3\left( 2-4t+t^2 \right) +\alpha _4\left( 6-18t+9t^2-t^3 \right) =0\Rightarrow \\\Rightarrow \left\{ \begin{array}{c} \alpha _1+2\alpha _3+6\alpha _4=0\\ 2\alpha _2-4\alpha _3-18\alpha _4=0\\ a_3+9\alpha _4=0\\ -\alpha _4=0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} \alpha _4=0\\ \alpha _3=0\\ 2\alpha _2=0\\ \alpha _1=0\\\end{array} \right. \Rightarrow \alpha _1=\alpha _2=\alpha _3=\alpha _4=0\\The\,\,system\,\,is\,\,linearly\,\,independent. Since\,\,the\,\,dimension\,\,of\,\,P_3\,\,is\,\,4, \\the\,\,system\,\,forms\,\,a\,\,basisα1f+α2g+α3h+α4p=0⇒⇒α1+2α2t+α3(2−4t+t2)+α4(6−18t+9t2−t3)=0⇒⇒⎩⎨⎧α1+2α3+6α4=02α2−4α3−18α4=0a3+9α4=0−α4=0⇒⎩⎨⎧α4=0α3=02α2=0α1=0⇒α1=α2=α3=α4=0Thesystemislinearlyindependent.SincethedimensionofP3is4,thesystemformsabasis
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment