α 1 f + α 2 g + α 3 h + α 4 p = 0 ⇒ ⇒ α 1 + 2 α 2 t + α 3 ( 2 − 4 t + t 2 ) + α 4 ( 6 − 18 t + 9 t 2 − t 3 ) = 0 ⇒ ⇒ { α 1 + 2 α 3 + 6 α 4 = 0 2 α 2 − 4 α 3 − 18 α 4 = 0 a 3 + 9 α 4 = 0 − α 4 = 0 ⇒ { α 4 = 0 α 3 = 0 2 α 2 = 0 α 1 = 0 ⇒ α 1 = α 2 = α 3 = α 4 = 0 T h e s y s t e m i s l i n e a r l y i n d e p e n d e n t . S i n c e t h e d i m e n s i o n o f P 3 i s 4 , t h e s y s t e m f o r m s a b a s i s \alpha _1f+\alpha _2g+\alpha _3h+\alpha _4p=0\Rightarrow \\\Rightarrow \alpha _1+2\alpha _2t+\alpha _3\left( 2-4t+t^2 \right) +\alpha _4\left( 6-18t+9t^2-t^3 \right) =0\Rightarrow \\\Rightarrow \left\{ \begin{array}{c} \alpha _1+2\alpha _3+6\alpha _4=0\\ 2\alpha _2-4\alpha _3-18\alpha _4=0\\ a_3+9\alpha _4=0\\ -\alpha _4=0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} \alpha _4=0\\ \alpha _3=0\\ 2\alpha _2=0\\ \alpha _1=0\\\end{array} \right. \Rightarrow \alpha _1=\alpha _2=\alpha _3=\alpha _4=0\\The\,\,system\,\,is\,\,linearly\,\,independent. Since\,\,the\,\,dimension\,\,of\,\,P_3\,\,is\,\,4, \\the\,\,system\,\,forms\,\,a\,\,basis α 1 f + α 2 g + α 3 h + α 4 p = 0 ⇒ ⇒ α 1 + 2 α 2 t + α 3 ( 2 − 4 t + t 2 ) + α 4 ( 6 − 18 t + 9 t 2 − t 3 ) = 0 ⇒ ⇒ ⎩ ⎨ ⎧ α 1 + 2 α 3 + 6 α 4 = 0 2 α 2 − 4 α 3 − 18 α 4 = 0 a 3 + 9 α 4 = 0 − α 4 = 0 ⇒ ⎩ ⎨ ⎧ α 4 = 0 α 3 = 0 2 α 2 = 0 α 1 = 0 ⇒ α 1 = α 2 = α 3 = α 4 = 0 T h e sys t e m i s l in e a r l y in d e p e n d e n t . S in ce t h e d im e n s i o n o f P 3 i s 4 , t h e sys t e m f or m s a ba s i s
Comments