Question #323724

2x+5y+3z=2


x+2y+2z=4


x+y+4z=11. Use the elementary row reduction to solve for the linear system.

1
Expert's answer
2022-04-05T14:43:38-0400

(2532122411411)\begin{pmatrix} 2 & 5&3&|&2\\ 1 & 2&2&|&4\\1&1&4&|&11 \end{pmatrix}



R1R3(1141112242532)R_{1}\leftrightarrow R_{3}\begin{pmatrix} 1&1&4&|&11\\ 1 & 2&2&|&4\\2 & 5&3&|&2 \end{pmatrix}



R1+R2R2-R_{1}+R_{2}\rightarrow R_{2}

2R1+R3R3-2R_{1}+R_{3}\rightarrow R_{3} (11411012703520)\begin{pmatrix} 1&1&4&|&11\\ 0 & 1&-2&|&-7\\0 & 3&-5&|&-20 \end{pmatrix}



3R2+R3R3-3R_{2}+R_{3}\rightarrow R_{3} (1141101270011)\begin{pmatrix} 1&1&4&|&11\\ 0 & 1&-2&|&-7\\0 & 0&1&|&1 \end{pmatrix}




Hence, we have;


x+y+4z=11x+y+4z=11

y2z=7y-2z=-7

z=1z=1


=>y=7+2z=7+2(1)=5=> y=-7+2z=-7+2(1)=-5

=>x=114zy=114(1)(5)=12=>x=11-4z-y=11-4(1)-(-5)=12



x=12,y=5,z=1∴ x=12, y=-5, z=1

















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS