Let A , B ∈ W A,B ∈ W A , B ∈ W and α ∈ R α∈ℝ α ∈ R such that
A = ( a 11 0 0 0 a 22 0 0 0 a 33 ) A=\begin{pmatrix}
a_{11} & 0&0 \\
0 & a_{22}&0\\0&0&a_{33}
\end{pmatrix} A = ⎝ ⎛ a 11 0 0 0 a 22 0 0 0 a 33 ⎠ ⎞ B = ( b 11 0 0 0 b 22 0 0 0 b 33 ) B=\begin{pmatrix}
b_{11} & 0&0 \\
0 & b_{22}&0\\0&0&b_{33}
\end{pmatrix} B = ⎝ ⎛ b 11 0 0 0 b 22 0 0 0 b 33 ⎠ ⎞
A + α B = ( a 11 0 0 0 a 22 0 0 0 a 33 ) + α ( b 11 0 0 0 b 22 0 0 0 b 33 ) A+αB=\begin{pmatrix}
a_{11} & 0&0 \\
0 & a_{22}&0\\0&0&a_{33}
\end{pmatrix} + α\begin{pmatrix}
b_{11} & 0&0 \\
0 & b_{22}&0\\0&0&b_{33}
\end{pmatrix} A + α B = ⎝ ⎛ a 11 0 0 0 a 22 0 0 0 a 33 ⎠ ⎞ + α ⎝ ⎛ b 11 0 0 0 b 22 0 0 0 b 33 ⎠ ⎞
= ( a 11 0 0 0 a 22 0 0 0 a 33 ) + ( α b 11 0 0 0 α b 22 0 0 0 α b 33 ) =\begin{pmatrix}
a_{11} & 0&0 \\
0 & a_{22}&0\\0&0&a_{33}
\end{pmatrix} + \begin{pmatrix}
αb_{11} & 0&0 \\
0 & αb_{22}&0\\0&0&αb_{33}
\end{pmatrix} = ⎝ ⎛ a 11 0 0 0 a 22 0 0 0 a 33 ⎠ ⎞ + ⎝ ⎛ α b 11 0 0 0 α b 22 0 0 0 α b 33 ⎠ ⎞
= ( a 11 + α b 11 0 0 0 a 22 + α b 22 0 0 0 a 33 + α b 33 ) =\begin{pmatrix}
a_{11}+αb_{11} & 0&0 \\
0 & a_{22}+αb_{22}&0\\0&0&a_{33}+αb_{33}
\end{pmatrix} = ⎝ ⎛ a 11 + α b 11 0 0 0 a 22 + α b 22 0 0 0 a 33 + α b 33 ⎠ ⎞
Hence, A + α B ∈ W A+αB∈W A + α B ∈ W
Thus, W W W is a subspace of M 3 × 3 ( R ) M_{3×3}(ℝ) M 3 × 3 ( R )
Comments