Let W be the set of all 3×3 real diagonal matrices. Prove that W is a subspace of M33.
Let "A,B \u2208 W" and "\u03b1\u2208\u211d" such that
"A=\\begin{pmatrix}\n a_{11} & 0&0 \\\\\n 0 & a_{22}&0\\\\0&0&a_{33}\n\\end{pmatrix}" "B=\\begin{pmatrix}\n b_{11} & 0&0 \\\\\n 0 & b_{22}&0\\\\0&0&b_{33}\n\\end{pmatrix}"
"A+\u03b1B=\\begin{pmatrix}\n a_{11} & 0&0 \\\\\n 0 & a_{22}&0\\\\0&0&a_{33}\n\\end{pmatrix} + \u03b1\\begin{pmatrix}\n b_{11} & 0&0 \\\\\n 0 & b_{22}&0\\\\0&0&b_{33}\n\\end{pmatrix}"
"=\\begin{pmatrix}\n a_{11} & 0&0 \\\\\n 0 & a_{22}&0\\\\0&0&a_{33}\n\\end{pmatrix} + \\begin{pmatrix}\n \u03b1b_{11} & 0&0 \\\\\n 0 & \u03b1b_{22}&0\\\\0&0&\u03b1b_{33}\n\\end{pmatrix}"
"=\\begin{pmatrix}\n a_{11}+\u03b1b_{11} & 0&0 \\\\\n 0 & a_{22}+\u03b1b_{22}&0\\\\0&0&a_{33}+\u03b1b_{33}\n\\end{pmatrix}"
Hence, "A+\u03b1B\u2208W"
Thus, "W" is a subspace of "M_{3\u00d73}(\u211d)"
Comments
Leave a comment