Question #323684

Let W be the set of all 3×3 real diagonal matrices. Prove that W is a subspace of M33.

1
Expert's answer
2022-04-05T14:33:02-0400

Let A,BWA,B ∈ W and αRα∈ℝ such that


A=(a11000a22000a33)A=\begin{pmatrix} a_{11} & 0&0 \\ 0 & a_{22}&0\\0&0&a_{33} \end{pmatrix} B=(b11000b22000b33)B=\begin{pmatrix} b_{11} & 0&0 \\ 0 & b_{22}&0\\0&0&b_{33} \end{pmatrix}


A+αB=(a11000a22000a33)+α(b11000b22000b33)A+αB=\begin{pmatrix} a_{11} & 0&0 \\ 0 & a_{22}&0\\0&0&a_{33} \end{pmatrix} + α\begin{pmatrix} b_{11} & 0&0 \\ 0 & b_{22}&0\\0&0&b_{33} \end{pmatrix}



=(a11000a22000a33)+(αb11000αb22000αb33)=\begin{pmatrix} a_{11} & 0&0 \\ 0 & a_{22}&0\\0&0&a_{33} \end{pmatrix} + \begin{pmatrix} αb_{11} & 0&0 \\ 0 & αb_{22}&0\\0&0&αb_{33} \end{pmatrix}



=(a11+αb11000a22+αb22000a33+αb33)=\begin{pmatrix} a_{11}+αb_{11} & 0&0 \\ 0 & a_{22}+αb_{22}&0\\0&0&a_{33}+αb_{33} \end{pmatrix}



Hence, A+αBWA+αB∈W



Thus, WW is a subspace of M3×3(R)M_{3×3}(ℝ)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS