Solve the following system of linear equations for ๐ฅ, ๐ฆ, ๐ง, ๐ก: โ๐ฆ+3๐ง+2๐ฅ+4๐ก = 9
๐ฅโ2๐ง+7๐ก =11 ๐งโ3๐ฆ+3๐ฅ+5๐ก = 8 ๐ฆ + 2๐ฅ + 4๐ง + 4๐ก = 10
Augmented matrix
"R_2=R_2-R_1\/2"
"R_3=R_3-3R_1\/2"
"R_4=R_4-R_1"
"R_3=R_3+3R_2"
"R_4=R_4-4R_2"
"R_4=R_4+15R_3\/14"
"R_4=R_4\/(-5)"
"R_3=R_3-14R_4"
"R_3=R_3\/(-14)"
"R_2=R_2-5R_4"
"R_2=R_2+7R_3\/2"
"R_2=2R_2"
"R_1=R_1-4R_4"
"R_1=R_1-3R_3"
"R_1=R_1+R_2"
"R_1=R_1\/2"
The solution is
"(x,y,z,t)=(-1,0,1,2)"
Comments
Leave a comment