Solve the following system of linear equations for π₯, π¦, π§, π‘: βπ¦+3π§+2π₯+4π‘ = 9
π₯β2π§+7π‘ =11 π§β3π¦+3π₯+5π‘ = 8 π¦ + 2π₯ + 4π§ + 4π‘ = 10
Augmented matrix
"R_2=R_2-R_1\/2"
"R_3=R_3-3R_1\/2"
"R_4=R_4-R_1"
"R_3=R_3+3R_2"
"R_4=R_4-4R_2"
"R_4=R_4+15R_3\/14"
"R_4=R_4\/(-5)"
"R_3=R_3-14R_4"
"R_3=R_3\/(-14)"
"R_2=R_2-5R_4"
"R_2=R_2+7R_3\/2"
"R_2=2R_2"
"R_1=R_1-4R_4"
"R_1=R_1-3R_3"
"R_1=R_1+R_2"
"R_1=R_1\/2"
The solution is
"(x,y,z,t)=(-1,0,1,2)"
Comments
Leave a comment