S o l u t i o n : W e k n o w t h a t B a s i s o f v e c t o r s p a c e V i s a l i n e a r l y i n d e p e n d e n t s e t t h a t s p a n s V . ∴ d i m e n s i o n o f V = C a r d ( b a s i s o f V ) N o w t o c h e c k l i n e a r l y i n d e p e n d e n t , w e n e e d t o w r i t e g i v e n v e c t o r s i n m a t r i x f o r m a n d r e d u c e i t t o r o w e c h e l o n f o r m . ∴ N u m b e r o f n o n − z e r o r o w s a r e t h e d i m e n s i o n s o f t h e s u b s p a c e s p a n n e d b y t h e g i v e n v e c t o r s . ∴ W e f o r m a m a t r i x w h o s e r o w s a r e g i v e n b y t h e s e v e c t o r s a n d r e d u c e i t t o e c h e l o n f o r m ∴ [ 1 0 2 2 0 1 1 0 1 ] A p p l y R 2 − 2 R 1 → R 2 [ 1 0 2 0 0 − 3 1 0 1 ] A p p l y R 3 − R 1 → R 3 [ 1 0 2 0 0 − 3 0 0 − 1 ] A p p l y ( R 3 / − 3 ) → R 3 [ 1 0 2 0 0 1 0 0 − 1 ] A p p l y R 3 + R 2 → R 3 [ 1 0 2 0 0 1 0 0 0 ] H e r e n o n − z e r o v e c t o r s a r e 2. ∴ 2 i s t h e d i m e n s i o n o f t h e s u b s p a c e s p a n n e d b y t h e g i v e n v e c t o r s i n V 3 ( R ) . Solution:
\\We ~ know~ that~ Basis ~of ~vector ~space ~V ~is~ a ~linearly~ independent ~set~ that~ spans~ V.
\\ \therefore ~dimension~ of ~V = Card(basis ~of~ V)
\\Now ~to ~check ~ linearly ~independent~, we ~need ~to~ write~ given ~vectors~ in ~matrix ~
\\form ~and ~reduce~ it ~to ~row ~echelon ~form.
\\ \therefore ~Number ~of ~non- zero~ rows ~are~ the~ dimensions ~of~ the ~subspace~ spanned ~\\by ~the~ given~ vectors.
\\ \therefore~ We~ form~ a~ matrix ~whose ~rows~ are~ given ~by ~these ~vectors ~and~ reduce~ ~\\it ~to~ echelon~ form
\\ \therefore \begin{bmatrix}
1 & 0 & 2\\
2 & 0 & 1\\
1 & 0 & 1
\end{bmatrix}
\\Apply~ R_2 -2R_1 \rightarrow R_2
\\ ~~~~\begin{bmatrix}
1 & 0 & 2\\
0 & 0 & -3\\
1 & 0 & 1
\end{bmatrix}
\\ Apply ~R_3 -R_1 \rightarrow ~R_3
\\ ~~~~\begin{bmatrix}
1 & 0 & 2\\
0 & 0 & -3\\
0 & 0 & -1
\end{bmatrix}
\\Apply~(R_3/-3) \rightarrow~R_3
\\~~~~\begin{bmatrix}
1 & 0 & 2\\
0 & 0 & 1\\
0 & 0 & -1
\end{bmatrix}
\\Apply~R_3+R_2 \rightarrow R_3
\\~~~~\begin{bmatrix}
1 & 0 & 2\\
0 & 0 & 1\\
0 & 0 & 0
\end{bmatrix}
\\ Here~non-zero~ vectors ~are~2.
\\ \therefore 2 ~is ~the~ dimension~ of ~the~ subspace~ spanned~ by ~the~given ~vectors~ in V3(R). S o l u t i o n : W e kn o w t ha t B a s i s o f v ec t or s p a ce V i s a l in e a r l y in d e p e n d e n t se t t ha t s p an s V . ∴ d im e n s i o n o f V = C a r d ( ba s i s o f V ) N o w t o c h ec k l in e a r l y in d e p e n d e n t , w e n ee d t o w r i t e g i v e n v ec t ors in ma t r i x f or m an d re d u ce i t t o ro w ec h e l o n f or m . ∴ N u mb er o f n o n − zero ro w s a re t h e d im e n s i o n s o f t h e s u b s p a ce s p ann e d b y t h e g i v e n v ec t ors . ∴ W e f or m a ma t r i x w h ose ro w s a re g i v e n b y t h ese v ec t ors an d re d u ce i t t o ec h e l o n f or m ∴ ⎣ ⎡ 1 2 1 0 0 0 2 1 1 ⎦ ⎤ A ppl y R 2 − 2 R 1 → R 2 ⎣ ⎡ 1 0 1 0 0 0 2 − 3 1 ⎦ ⎤ A ppl y R 3 − R 1 → R 3 ⎣ ⎡ 1 0 0 0 0 0 2 − 3 − 1 ⎦ ⎤ A ppl y ( R 3 / − 3 ) → R 3 ⎣ ⎡ 1 0 0 0 0 0 2 1 − 1 ⎦ ⎤ A ppl y R 3 + R 2 → R 3 ⎣ ⎡ 1 0 0 0 0 0 2 1 0 ⎦ ⎤ Here n o n − zero v ec t ors a re 2. ∴ 2 i s t h e d im e n s i o n o f t h e s u b s p a ce s p ann e d b y t h e g i v e n v ec t ors inV 3 ( R ) .
Comments