Question #245865

In R

4

let L

1

be the subspace spaned by the vectors a=(1;2;5;1), b=(4;3;3;0), c=(7;4;1;−1), and let L

2

be the subspace spaned by the vectors d=(1;1;1;1), f=(−1;0;3;−1) and g=(5;2;−1;−3). Find the dimension of L

1

∩L

2

.


1
Expert's answer
2021-10-08T15:28:02-0400

dim(L1L2)=dimL1+dimL2dim(L1L2).dim (L_1\cap L_2)=dimL_1+dimL_2-dim(L_1\cup L_2). We can see that dimL1=2dimL_1=2 , because the rank of the matrix composed of the coordinates of the vectors a,b,ca,b,c equals to 2:

rank(125143307411)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 4 & 3 &3&0\\ 7& 4& 1& -1\\ \end{pmatrix}= rank(125105174010348)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -5 &-17&-4\\ 0& -10& -34& -8 \end{pmatrix}= rank(125105174)=2rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -5 &-17&-4 \end{pmatrix}=2 .

We can see that dimL2=3dimL_2=3 , because

rank(111110315213)=rank \begin{pmatrix} 1 & 1 &1& 1\\ -1 & 0 &3&-1\\ 5& 2& -1& -3 \end{pmatrix}= rank(111101400368)=rank \begin{pmatrix} 1 & 1 &1& 1\\ 0 & 1 &4&0\\ 0& -3& -6& -8 \end{pmatrix}= rank(111101400068)=3rank \begin{pmatrix} 1 & 1 &1& 1\\ 0 & 1 &4&0\\ 0& 0& 6& -8 \end{pmatrix}=3

If we want find the dim(L1L2)dim(L_1\cup L_2) , we can find the rank of a matrix composed of vectors a,b,c,d,f,ga,b,c,d,f,g :

rank(125143307411111110315213)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 4 & 3 &3&0\\ 7& 4& 1& -1\\ 1 & 1 &1& 1\\ -1 & 0 &3&-1\\ 5& 2& -1& -3 \end{pmatrix}= rank(1251051740103480140028008268)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -5 &-17&-4\\ 0& -10& -34& -8 \\ 0 & -1 &-4& 0\\ 0 &2 &8&0\\ 0& -8& -26& -8 \end{pmatrix}=  rank(125101400517408268)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -1 &-4& 0\\ 0 & -5 &-17&-4\\ 0& -8& -26& -8 \end{pmatrix}= rank(125101400517404134)=rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -1 &-4& 0\\ 0 & 5 &17&4\\ 0& 4& 13& 4 \end{pmatrix}= rank(125101400034)=3rank \begin{pmatrix} 1 & 2 &5& 1\\ 0 & -1 &-4& 0\\ 0 & 0 &-3&4 \end{pmatrix}=3

So dim(L1L2)=3dim(L_1\cup L_2)=3. It follows that  dim(L1L2)=2+33=2dim (L_1\cap L_2)=2+3-3=2 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS