Answer to Question #213774 in Linear Algebra for Simphiwe Dlamini

Question #213774

Suppose T \isin L(R2) is dened by T(x,y) = (-3y,x). Find the eigenvalues of T.


1
Expert's answer
2021-07-08T05:08:08-0400

Given that T is a linear transformation

T(x,y)=(-3y,x)

we know that the basis of R2 is {(1,0),(0,1)}

then,

T(1,0)=(-3(0),1)

T(1,0)=(0,1)

T(1,0)=0(1,0)+1(0,1)...........(1)

And,

T(0,1)=((-3)1,0)=(-3,0)

(0,1)=-3(1,0)+0(0,1)............(2)

Now the matrix representation of given linear transformation with respect to standard basis is given as,

[T]=[0310]\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix}

to find the eigen values of T we need to find the eigen values of matrix [T]

let A=[T]

then, A=[0310]\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix}

for eigen values put |A-λ\lambda I|=0

whereλ\lambda is eigen value of A

then,

[0310]\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix} -[λ00λ]\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} =A-λ\lambda I

A-λ\lambda I=[λ31λ]\begin{bmatrix} -\lambda & -3 \\ 1 & -\lambda \end{bmatrix}

put A-λ\lambda I=0

then,

[λ31λ]\begin{bmatrix} -\lambda & -3 \\ 1 & -\lambda \end{bmatrix} =0

λ2\lambda^2 +3=0

λ2\lambda^2 =-3

λ=3i,3i\lambda=\sqrt3i,-\sqrt3i

\therefore The eigen values of T are 3i,3i\sqrt3i,-\sqrt3i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment