Question #213214

Let S = {α, β, γ}, T = {α, α + β, α + β + γ}, W = {α + β, β + γ, α + γ} be subsets in (4)

a vector space V. Prove that L(S ) = L(T) = L(W).


1
Expert's answer
2021-07-14T14:52:31-0400

s=(α,β,γ)s=(\alpha,\beta,\gamma)

let tL(T)t \in L(T) where t is a linear combination of element of T.

i.e. t=a(α)+b(α+β)+c(α+β+γ)a(\alpha)+b(\alpha+\beta)+c(\alpha+\beta+\gamma)

so tt\in L(S)

L(T)\subset L(S).................................(1)

Now, w\in L(W) such that w=a1(α+β)+b1(β+γ)+c1(α+γ)w=a_1(\alpha+\beta)+b_1(\beta+\gamma)+c_1(\alpha+\gamma)

w=(a1+c1)α\alpha+

(a1+b1) β\beta +(b1+c1)γ\gamma

w is a linear combination of α,β,γ\alpha,\beta,\gamma

so w\in L(S)................................(2)

now let s\in L(S), where s=a2+b2β+c3γs=a_2+b_2\beta +c_3\gamma

s=a1α+b2β+c3γs=a_1\alpha+b_2\beta+c_3\gamma

we can write s in form of

s=a3α+a4(α+β)+a5(γ+α)s=a_3\alpha +a_4(\alpha+\beta)+a_5(\gamma+\alpha)

and

s=a6(α+β)+a7(β+γ)+a8(γ+α)s=a_6 (\alpha+\beta)+a_7(\beta+\gamma)+a_8(\gamma+\alpha)

so, s\in L(T); s\in L(W)

L(S)L(T);L(S)L(W)\therefore L(S)\subset L(T); L(S)\subset L(W)

L(S)=L(T)=L(W)\therefore L(S)=L(T)=L(W)

hence proved...





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS