s=(α,β,γ)
let t∈L(T) where t is a linear combination of element of T.
i.e. t=a(α)+b(α+β)+c(α+β+γ)
so t∈ L(S)
L(T)⊂ L(S).................................(1)
Now, w∈ L(W) such that w=a1(α+β)+b1(β+γ)+c1(α+γ)
w=(a1+c1)α+
(a1+b1) β +(b1+c1)γ
w is a linear combination of α,β,γ
so w∈ L(S)................................(2)
now let s∈ L(S), where s=a2+b2β+c3γ
s=a1α+b2β+c3γ
we can write s in form of
s=a3α+a4(α+β)+a5(γ+α)
and
s=a6(α+β)+a7(β+γ)+a8(γ+α)
so, s∈ L(T); s∈ L(W)
∴L(S)⊂L(T);L(S)⊂L(W)
∴L(S)=L(T)=L(W)
hence proved...
Comments