Question #213088

Show that T:R^3 →R^2: T(x,y,z)= (2x+y-z,x+z) is a linear transformation. Verify that T satisfies the Rank-nullity theorem


1
Expert's answer
2021-07-05T14:40:25-0400

Let α=(x1,y1,z1)R3,β=(x2,y2,z2)R3\alpha=(x_1,y_1,z_1)\isin R^3, \beta=(x_2,y_2,z_2)\isin R^3

Then T(α)=(2x1+y1z1,x1+z1)T(\alpha)=(2x_1+y_1-z_1,x_1+z_1)

T(β)=(2x2+y2z2,x2+z2)T(\beta)=(2x_2+y_2-z_2,x_2+z_2)

α+β=(x1+x2,y1+y2,z1+z2)\alpha+\beta=(x_1+x_2,y_1+y_2,z_1+z_2)

T(α+β)=(2(x1+x2)+(y1+y2)(z1+z2),(x1+x2)+(z1+z2))T(\alpha+\beta)=(2(x_1+x_2)+(y_1+y_2)-(z_1+z_2),(x_1+x_2)+(z_1+z_2))

=((2x1+y1z1)+(2x2+y2z2),(x1+z1)+(x2+z2))=((2x_1+y_1-z_1)+(2x_2+y_2-z_2),(x_1+z_1)+(x_2+z_2))

=T(α)+T(β)=T(\alpha)+T(\beta)

Also let cR.c\isin R. 

Then

 cα=(cx1,cy1,cz1)c\alpha=(cx_1,cy_1,cz_1)

T(cα)=(2cx1+cy1cz1,cx1+cz1)T(c\alpha)=(2cx_1+cy_1-cz_1,cx_1+cz_1)

=c(2x1+y1z1,x1+z1)=c(2x_1+y_1-z_1,x_1+z_1)

=cT(α)=cT(\alpha)

Thus 

T(α+β)=T(α)+T(β)T(\alpha+\beta)=T(\alpha)+T(\beta) 

for all α,βR3\alpha,\beta\isin R^3

and 

T(cα)=cT(α)T(c\alpha)=cT(\alpha) for all cRc\isin R and αR3.\alpha\isin R^3.

Hence TT is a linear transformation.


KKerer T=T= {(x,y,z)R3:T(x,y,z)=(0,0)(x,y,z)\isin R^3:T(x,y,z)=(0,0)}

Let (x1,y1,z1)(x_1,y_1,z_1)\isin KerKer TT

Then 2x1+y1z1=0,x1+z1=0.2x_1+y_1-z_1=0,x_1+z_1=0.

From second equation we get x1=z1x_1=-z_1

Let x1=kx_1=k (say) , then z1=kz_1=-k

Now from first equation we get , y1=3ky_1=-3k

Therefore (x1,y1,z1)=k(1,3,1)=c(1,3,1)(x_1,y_1,z_1)=k(1,-3,-1)=c(-1,3,1)cRc\isin R

Let α=(1,3,1)\alpha=(-1,3,1). Then KerKer T=T=linear span of α=L\alpha=L{α\alpha } and dimdimKerKer T=1.T=1.


ImTImT is the linear span of the vectors T(α1),T(α2),T(α3)T(\alpha_1),T(\alpha_2),T(\alpha_3) where {α1,α2,α3\alpha_1,\alpha_2,\alpha_3} is any basis of R3R^3.

{ϵ1=(1,0,0),ϵ2=(0,1,0),ϵ3=(0,0,1)\epsilon_1=(1,0,0),\epsilon_2=(0,1,0),\epsilon_3=(0,0,1)} is a basis of R3R^3.

Now T(ϵ1)=(2,1),T(ϵ2)=(1,0),T(ϵ3)=(1,1).T(\epsilon_1)=(2,1),T(\epsilon_2)=(1,0),T(\epsilon_3)=(-1,1).

ImT=LImT=L{(2,1),(1,0),(1,1)(2,1),(1,0),(-1,1) }

These vectors are linearly dependent in R2.R^2.

But the subset {(2,1),(1,0)(2,1),(1,0)} is linearly independent in R2R^2.

ImT=L\therefore ImT=L{(2,1),(1,0)(2,1),(1,0) }

Therefore dimdim ImT=2.ImT=2.


Now according to the Rank- Nullity theorem we know that

dimdim KerT+KerT+ dimdim ImTImT =dim=dim R3R^3

Here, dimdim KerT+dimKerT+dim ImT=1+2=3ImT=1+2=3.

dimdim R3=3R^3=3

Therefore TT satisfies the Rank-Nullity theorem.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS