Let α=(x1,y1,z1)∈R3,β=(x2,y2,z2)∈R3
Then T(α)=(2x1+y1−z1,x1+z1)
T(β)=(2x2+y2−z2,x2+z2)
α+β=(x1+x2,y1+y2,z1+z2)
T(α+β)=(2(x1+x2)+(y1+y2)−(z1+z2),(x1+x2)+(z1+z2))
=((2x1+y1−z1)+(2x2+y2−z2),(x1+z1)+(x2+z2))
=T(α)+T(β)
Also let c∈R.
Then
cα=(cx1,cy1,cz1)
T(cα)=(2cx1+cy1−cz1,cx1+cz1)
=c(2x1+y1−z1,x1+z1)
=cT(α)
Thus
T(α+β)=T(α)+T(β)
for all α,β∈R3
and
T(cα)=cT(α) for all c∈R and α∈R3.
Hence T is a linear transformation.
Ker T= {(x,y,z)∈R3:T(x,y,z)=(0,0)}
Let (x1,y1,z1)∈ Ker T
Then 2x1+y1−z1=0,x1+z1=0.
From second equation we get x1=−z1
Let x1=k (say) , then z1=−k
Now from first equation we get , y1=−3k
Therefore (x1,y1,z1)=k(1,−3,−1)=c(−1,3,1), c∈R
Let α=(−1,3,1). Then Ker T=linear span of α=L{α } and dimKer T=1.
ImT is the linear span of the vectors T(α1),T(α2),T(α3) where {α1,α2,α3} is any basis of R3.
{ϵ1=(1,0,0),ϵ2=(0,1,0),ϵ3=(0,0,1)} is a basis of R3.
Now T(ϵ1)=(2,1),T(ϵ2)=(1,0),T(ϵ3)=(−1,1).
ImT=L{(2,1),(1,0),(−1,1) }
These vectors are linearly dependent in R2.
But the subset {(2,1),(1,0)} is linearly independent in R2.
∴ImT=L{(2,1),(1,0) }
Therefore dim ImT=2.
Now according to the Rank- Nullity theorem we know that
dim KerT+ dim ImT =dim R3
Here, dim KerT+dim ImT=1+2=3.
dim R3=3
Therefore T satisfies the Rank-Nullity theorem.
Comments