Question #213087

Define: R^3→R^3 by


T(x,y,z)=(x-y+z,x+y,y+z)


Let v1= (1,1,1), v2= (0,1,1), v3= (0,0,1). Find a matrix of T with respect to the basis {v1,v2,v3}. Futher check T is invertible or not.


1
Expert's answer
2021-09-03T02:39:16-0400

Here T(x,y,z)=(xy+z,x+y,y+z)x,y,z)=(x-y+z,x+y,y+z)

v1=(1,1,1)v_1=(1,1,1) , v2=(0,1,1)v_2=(0,1,1) , v3=(0,0,1)v_3=(0,0,1)

So T(1,1,1)=(11+1,1+1,1+1)=(1,2,2)T(1,1,1)=(1-1+1,1+1,1+1)=(1,2,2)

T(0,1,1)=(01+1,0+1,1+1)=(0,1,2)T(0,1,1)=(0-1+1,0+1,1+1)=(0,1,2)

T(0,0,1)=(00+1,0+0,0+1)=(1,0,1)T(0,0,1)=(0-0+1,0+0,0+1)=(1,0,1)


So Matrix of T with respect to basis {v1,v2,v3v_1,v_2,v_3} is :

A=[122012101]A=\begin{bmatrix} 1& 2 &2 \\ 0 & 1 & 2\\ 1 &0&1 \end{bmatrix}


Here |A|=1(10)2(02)+2(01)=1+42=52=31(1-0)-2(0-2)+2(0-1)=1+4-2=5-2=3 which is not equal to .So matrix is invertible.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS