Question #193341

Let P(x) = x2 - x - 6. Compute P(A) for matrix A = [3, -1and 0 -2]


1
Expert's answer
2021-05-17T08:16:58-0400

Given, P(x)=x2x6P(x)=x^2-x-6


A=[2102]A=\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}




P(A)=A2A6IP(A)=A^2-A-6I


   =[2102][2102][2102]6[1001]=[9104]+[3102][6006]=[0000]=\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}-\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}-6\begin{bmatrix}1&0\\0&1\end{bmatrix} \\[9pt] = \begin{bmatrix} 9&-1\\0&4\end{bmatrix} +\begin{bmatrix} -3&1\\0&2\end{bmatrix} -\begin{bmatrix} 6&0\\0&6\end{bmatrix} \\[9pt] =\begin{bmatrix} 0&0\\0&0\end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS