Answer to Question #193341 in Linear Algebra for Tebogo

Question #193341

Let P(x) = x2 - x - 6. Compute P(A) for matrix A = [3, -1and 0 -2]


1
Expert's answer
2021-05-17T08:16:58-0400

Given, "P(x)=x^2-x-6"


"A=\\begin{bmatrix} 2&-1\\\\0&-2\\end{bmatrix}"




"P(A)=A^2-A-6I"


   "=\\begin{bmatrix} 2&-1\\\\0&-2\\end{bmatrix}\\begin{bmatrix} 2&-1\\\\0&-2\\end{bmatrix}-\\begin{bmatrix} 2&-1\\\\0&-2\\end{bmatrix}-6\\begin{bmatrix}1&0\\\\0&1\\end{bmatrix}\n\\\\[9pt]\n\n\n= \\begin{bmatrix} 9&-1\\\\0&4\\end{bmatrix} +\\begin{bmatrix} -3&1\\\\0&2\\end{bmatrix} -\\begin{bmatrix} 6&0\\\\0&6\\end{bmatrix} \n\\\\[9pt]\n\n\n=\\begin{bmatrix} 0&0\\\\0&0\\end{bmatrix}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS