Let P(x) = x2 - x - 6. Compute P(A) for matrix A = [3, -1and 0 -2]
Given, P(x)=x2−x−6P(x)=x^2-x-6P(x)=x2−x−6
A=[2−10−2]A=\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}A=[20−1−2]
P(A)=A2−A−6IP(A)=A^2-A-6IP(A)=A2−A−6I
=[2−10−2][2−10−2]−[2−10−2]−6[1001]=[9−104]+[−3102]−[6006]=[0000]=\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}-\begin{bmatrix} 2&-1\\0&-2\end{bmatrix}-6\begin{bmatrix}1&0\\0&1\end{bmatrix} \\[9pt] = \begin{bmatrix} 9&-1\\0&4\end{bmatrix} +\begin{bmatrix} -3&1\\0&2\end{bmatrix} -\begin{bmatrix} 6&0\\0&6\end{bmatrix} \\[9pt] =\begin{bmatrix} 0&0\\0&0\end{bmatrix}=[20−1−2][20−1−2]−[20−1−2]−6[1001]=[90−14]+[−3012]−[6006]=[0000]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments