Integral Calculus Answers

Questions: 262

Answers by our Experts: 231

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Search & Filtering

Evaluate 3(x^2) -4x + 2 dx from first principles (upper bound: 4, lower bound: 2 )
Integrate with respect to x: ∫ x^2/((x-2)(x^2+1)) dx

4/5 ln⁡(x-2)+2/5 tan^(-1) x+c

4/5 ln(x-2)+1/5 ln⁡(x^2+1)+2/5 tan^(-1) x+c

4/5 ln(x-2)+1/10 ln⁡(x^2+1)+2/5 tan^(-1) x+c

4/5 ln(x-3)+1/10 ln⁡(x^2+1)+2/5 tan^(-1) x+c
Integrate with respect to x: ∫ sec⁡ x tan⁡ x dx

a. secx + c

b. cscx + c

c. sinx + c

d. cos x + c
Determine l = ∫ 2 cos⁡ x dx, given that l=7, when x=

cosx + sinx + c

2 sin x + 5

sin x + c

cosec x + c
Determine l = ∫ 5dx, given that l = 16, when x = 2.

a. x + c

b. sin2x + c

c. x + c

d. 5x + 6
Determine l = ∫ (4x)^2 dx, given that l = 25, when x = 3.

a. (4x)^3/3 - 11

b. (4x)^3/3 - c

c. 1/2

d. 4
Integrate with respect to x: ∫ xdx

a. x^2/2+c

b. 5/8

c. (-8)/5

d. 8/5
Integrate with respect to x: ∫ x 1/2 dx

a. (2/3)/3+c

b. (2x^(3/2))/3+c

c. 2x+c

d. 2
Integrate with respect to t: ∫ sec^2 x dx

a. sinx
b. sinx + c
c. sec x + c
d. tanx + c
Integrate with respect to x: ∫ 6/x dx

a. 6x + c
b. 6ln x + c
c. 6
d. ln x + c
LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS