The base of a prism is a regular pentagon with one side measuring 15 cm. Its
Altitude is 32 cm. Find the following;
Let "AB=BC=CD=DE=AE" then "A"1"B"1"=B"1"C"1"=C"1"D"1"=D"1"E"1 "=E"1"A"1
Then the area of the upper and lower bases of the prism: "S\\scriptsize{base} \\normalsize =\\frac{AB^2\\sqrt{25+10\\sqrt{5}}}4=\\frac{225\\sqrt{25+10\\sqrt{5}}}4",
both bases: "S^*=2S=\\frac{225\\sqrt{25+10\\sqrt{5}}}2"
1.
A side face has the area "S=AB\\cdot AA"1 , all five side faces have the area "S^{**}=5S=5\\cdot15\\cdot32=2400" cm2
2.
The total surface area: "S=S^*+S^{**}=\\frac{225\\sqrt{25+10\\sqrt{5}}}2+2400\\thickapprox3175,2148" cm2
3.
The volume of the prism: "V=S\\scriptsize{base}\\normalsize \\cdot AA"1 "=\\frac{225\\sqrt{25+10\\sqrt{5}}}4\\cdot32=1800\\sqrt{25+10\\sqrt{5}}" "\\thickapprox12387,4373" cm3
Comments
Leave a comment