Answer to Question #247364 in Geometry for M.l

Question #247364

Point M lies on side AC of an equilateral triangle ABC; circles   \Omega _1  and   \Omega _2  are circumcircles of triangles MAB and MBC respectively. It is known that point   A  divides arc   MAB  of circle in the ratio of   \Omega _1  that MA:AB = 28:41. Find the ratio on which point C devides arc   MCB  of circle   \Omega _2 . In the answer indicate MC:CB


1
Expert's answer
2021-10-12T15:02:59-0400

given

According to problem, figure is




Since ∇ABC

∇ABC is equilateral triangle, so AB=BC=CA=a

AB=BC=CA=a

Given that

MA:AB=28:41MA:AB=28:41



We can write 

MA:AC=28:41MA:AC=28:41

MAAC=2841⇒\frac{MA}{AC}=\frac{28}{41}



Since


MA=ACMCMA=AC−MC


So

ACMCAC=2841\frac{AC−MC}{AC}=\frac{28}{41}


1MCAC=2841\\⇒1−\frac{MC}{AC}=\frac{28}{41}


MCAC=12841\\⇒\frac{MC}{AC}=1−\frac{28}{41}


MCAC=1341\\⇒\frac{MC}{AC}=\frac{13}{41}


Since AC=CBAC=CB

AC=CBAC=CB

So

MC:CB=13:41MC:CB=13:41




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment