Question #168646

Solid A and solid B are similar. The surface area of solid A is 675 m2 and the surface area of solid B is 432 m2. If the volume of solid B is 960 m3, find the volume of solid A.


1
Expert's answer
2021-03-09T12:38:11-0500

Answer


  • As the shape of solids are not given, lets start from the definition of the volume: V=L×W×H\small V=L\times W\times H

Vb=Lb×Wb×HbVa=La×Wa×Ha\qquad\qquad \begin{aligned} \small V_b&= \small L_b\times W_b\times H_b\\ \small V_a&= \small L_a\times W_a\times H_a \end{aligned}

  • Since the solids are similar,

AreaaAreab=(LaLb)2=(WaWb)2=(HaHb)2675432=(54)2=(LaLb)2=(WaWb)2=(HaHb)2Then,La=5Lb4Wa=5Wb4Ha=5Hb4Va=5Lb4×5Wb4×5Hb4=(54)3×Vb=1875m3\qquad\qquad \begin{aligned} \small \frac{Area_a}{Area_b}&= \small (\frac{L_a}{L_b})^2=(\frac{W_a}{W_b})^2=(\frac{H_a}{H_b})^2\\ \small \frac{675}{432}=(\frac{5}{4})^2&= \small \small (\frac{L_a}{L_b})^2=(\frac{W_a}{W_b})^2=(\frac{H_a}{H_b})^2\\ \\ Then,\\ \\ \small L_a&= \small \frac{5L_b}{4}\\ \small W_a&= \small \frac{5W_b}{4}\\ \small H_a&= \small \frac{5H_b}{4}\\ \\ \therefore\small V_a&= \small \frac{5L_b}{4}\times \frac{5W_b}{4}\times \frac{5H_b}{4}\\ &= \small (\frac{5}{4})^3\times V_b\\ &= \small 1875m^3 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS