If X and Y are complementary angles, sinX =15/17 and cos X = 8/17, find each of the following :
a. tanX=
b. sinY=
c. cosY=
d. tsnY=
tanX=SinXCosXtan X = \frac{Sin X}{Cos X}tanX=CosXSinX
tanX=1517817tan X = \frac{\frac{15}{17}}{\frac{8}{17}}tanX=1781715
tanX=1517×178tan X = \frac{15}{17} × \frac{17}{8}tanX=1715×817
tanX=158tan X = \frac{15}{8}tanX=815
Since X and Y are complementary angles
SinY=CosX=817Sin Y = Cos X = \frac{8}{17}SinY=CosX=178
=>SinY=817=>Sin Y = \frac{8}{17}=>SinY=178
CosY=SinX=1517Cos Y = Sin X = \frac{15}{17}CosY=SinX=1715
=>CosY=1517=> Cos Y= \frac{15}{17}=>CosY=1715
tanY=SinYCosYtan Y = \frac{Sin Y}{Cos Y}tanY=CosYSinY
tanY=8171517tan Y = \frac{\frac{8}{17}}{\frac{15}{17}}tanY=1715178
=>tanY=817×1715=> tan Y = \frac{8}{17} × \frac{17}{15}=>tanY=178×1517
tanY=815tan Y = \frac{8}{15}tanY=158
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments