Question #168263

If X and Y are complementary angles, sinX =15/17 and cos X = 8/17, find each of the following :

a. tanX=

b. sinY=

c. cosY=

d. tsnY=


1
Expert's answer
2021-03-07T17:09:59-0500

tanX=SinXCosXtan X = \frac{Sin X}{Cos X}


tanX=1517817tan X = \frac{\frac{15}{17}}{\frac{8}{17}}


tanX=1517×178tan X = \frac{15}{17} × \frac{17}{8}


tanX=158tan X = \frac{15}{8}


Since X and Y are complementary angles


SinY=CosX=817Sin Y = Cos X = \frac{8}{17}

=>SinY=817=>Sin Y = \frac{8}{17}


CosY=SinX=1517Cos Y = Sin X = \frac{15}{17}

=>CosY=1517=> Cos Y= \frac{15}{17}


tanY=SinYCosYtan Y = \frac{Sin Y}{Cos Y}


tanY=8171517tan Y = \frac{\frac{8}{17}}{\frac{15}{17}}


=>tanY=817×1715=> tan Y = \frac{8}{17} × \frac{17}{15}

tanY=815tan Y = \frac{8}{15}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS