Question #158157

Find the length of the arc on the unit circle with the given central angles

a. 315º

b. 240º


1
Expert's answer
2021-01-26T02:34:44-0500

SinceitisaunitcircleitsradiusisoneunitSince\:it\:is\:a\:unit\:circle\:its\:radius\:is\:one\:unit.

Thecircumfrence2πrissimplifiedto2π.The\:circumfrence\:2\pi r\:is\:simplified\:to\:2\pi .

(a)arclengthcircumfrence=centralangle360\left(a\right)\:\:\frac{arc\:length}{circumfrence}=\frac{central\:angle}{360^{\circ }}

arclength2π=315360\frac{arc\:length}{2\pi }=\frac{315^{\circ }}{360^{\circ }}

arclength=315×2π360arc\:length=\frac{315\times2\pi }{360}

arclength=74πarc\:length=\frac{7}{4}\pi


(b)arclengthcircumfrence=centralangle360\left(b\right)\:\:\frac{arc\:length}{circumfrence}=\frac{central\:angle}{360^{\circ }}

arclength2π=240360\frac{arc\:length}{2\pi }=\frac{240^{\circ }}{360^{\circ }}\:

arclength=240×2π360\:arc\:length=\frac{240\times2\pi }{360}

arclength=43πarc\:length=\frac{4}{3}\pi





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS