1 . The surface area of a sphere of radius r r r is
S = 4 S=4 S = 4 π r 2 \pi r^2 π r 2
then,
r = S 4 π r=\sqrt{\frac{S}{4\pi}} r = 4 π S
Given S = 144 π S=144\pi S = 144 π c m 2 cm^2 c m 2
r = 144 π c m 2 4 π = 12 2 = 6 r=\sqrt{\frac{144\pi cm^2}{4\pi}} = \frac{12}{2} = 6 r = 4 π 144 π c m 2 = 2 12 = 6 c m cm c m
2 . For a regular tetrahedron of edge length a a a :
Altitude h = 2 3 a h=\sqrt{\frac{2}{3}}a h = 3 2 a
a = 2 r 6 a=2r\sqrt6 a = 2 r 6 = 12 6 =12\sqrt6 = 12 6
h = 2 3 × 12 6 = 24 h=\sqrt\frac{2}{3}\times12\sqrt6 = 24 h = 3 2 × 12 6 = 24
3 . The diameter of the sphere would be equal to the side of the square .
d = 12 c m d=12cm d = 12 c m
then,
r = 6 c m r=6cm r = 6 c m
So,
V = 4 3 × π r 3 V=\frac{4}{3} \times \pi r^3 V = 3 4 × π r 3
V = 4 3 × π × 216 V=\frac{4}{3} \times \pi \times216 V = 3 4 × π × 216
V = 904.32 V=904.32 V = 904.32
Comments