Lets denote a=BC, b=AC, c=AB.
Incenter I divides the angle bisector in a defined ratio of the length of sides of the triangle
IKAI=ab+c, ILBI=ba+c
Let x=AN, y=BN, n=BK, m=KC, p=AL, q=CL.
An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.
yx=ab, x+y=c
pq=ca, p+q=b
mn=bc, n+m=a
Then
x=a+bbc,y=a+bac
n=b+cac,m=b+cab
p=a+cbc,q=a+cab
The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to 7/39 , 9/65 and 7/15 respectively, therefore:
bcpx=397, acny=659, abmq=157
Then
a+cbc⋅a+bbc=397bc
b+cac⋅a+bac=659ac
b+cab⋅b+cab=157ab
Let b/a=u and c/a=v, then:
uv=397(1+u)(1+v)
v=659(u+v)(1+u)
u=157(u+v)(1+v)
659(u+v)(1+u)⋅157(u+v)(1+v)=397(1+u)(1+v)
(u+v)2=117325=925
IKAI=ab+c=ab+ac=u+v=35
Answer: 35
Comments