Question #147540
Let AK, BL, CN be angle bisectors of triangle ABC, and they intersect at point I. It is known that the ratios of areas of triangles ANL , BKN and CLK to the area of triangle ABC are equal to (7/39), (9/65) and (7/15) respectively. Find the ratio of IK:AI
1
Expert's answer
2020-12-01T03:02:27-0500

Lets denote a=BC, b=AC, c=AB.

Incenter I divides the angle bisector in a defined ratio of the length of sides of the triangle

AIIK=b+ca, BIIL=a+cb\frac{AI}{IK}=\frac{b+c}{a}, \ \frac{BI}{IL}=\frac{a+c}{b}

Let x=AN, y=BN, n=BK, m=KC, p=AL, q=CL.

An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.

xy=ba, x+y=c\frac{x}{y}=\frac{b}{a}, \ x+y=c

qp=ac, p+q=b\frac{q}{p}=\frac{a}{c}, \ p+q=b

nm=cb, n+m=a\frac{n}{m}=\frac{c}{b}, \ n+m=a

Then

x=bca+b,y=aca+bx=\frac{bc}{a+b}, y=\frac{ac}{a+b}

n=acb+c,m=abb+cn=\frac{ac}{b+c}, m=\frac{ab}{b+c}

p=bca+c,q=aba+cp=\frac{bc}{a+c}, q=\frac{ab}{a+c}

The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to 7/39 , 9/65 and 7/15 respectively, therefore:

pxbc=739, nyac=965, mqab=715\frac{px}{bc}=\frac{7}{39},\ \frac{ny}{ac}=\frac{9}{65}, \ \frac{mq}{ab}=\frac{7}{15}

Then

bca+cbca+b=739bc\frac{bc}{a+c}\cdot\frac{bc}{a+b}=\frac{7}{39}bc

acb+caca+b=965ac\frac{ac}{b+c}\cdot\frac{ac}{a+b}=\frac{9}{65}ac

abb+cabb+c=715ab\frac{ab}{b+c}\cdot\frac{ab}{b+c}=\frac{7}{15}ab

Let b/a=u and c/a=v, then:

uv=739(1+u)(1+v)uv=\frac{7}{39}(1+u)(1+v)

v=965(u+v)(1+u)v=\frac{9}{65}(u+v)(1+u)

u=715(u+v)(1+v)u=\frac{7}{15}(u+v)(1+v)

965(u+v)(1+u)715(u+v)(1+v)=739(1+u)(1+v)\frac{9}{65}(u+v)(1+u)\cdot\frac{7}{15}(u+v)(1+v)=\frac{7}{39}(1+u)(1+v)

(u+v)2=325117=259(u+v)^2=\frac{325}{117}=\frac{25}{9}

AIIK=b+ca=ba+ca=u+v=53\frac{AI}{IK}=\frac{b+c}{a}=\frac{b}{a}+\frac{c}{a}=u+v=\frac{5}{3}


Answer: 53\frac{5}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS