Lets denote a=BC, b=AC, c=AB.
Incenter I divides the angle bisector in a defined ratio of the length of sides of the triangle
"\\frac{AI}{IK}=\\frac{b+c}{a}, \\ \\frac{BI}{IL}=\\frac{a+c}{b}"
Let x=AN, y=BN, n=BK, m=KC, p=AL, q=CL.
An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.
"\\frac{x}{y}=\\frac{b}{a}, \\ x+y=c"
"\\frac{q}{p}=\\frac{a}{c}, \\ p+q=b"
"\\frac{n}{m}=\\frac{c}{b}, \\ n+m=a"
Then
"x=\\frac{bc}{a+b}, y=\\frac{ac}{a+b}"
"n=\\frac{ac}{b+c}, m=\\frac{ab}{b+c}"
"p=\\frac{bc}{a+c}, q=\\frac{ab}{a+c}"
The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to 7/39 , 9/65 and 7/15 respectively, therefore:
"\\frac{px}{bc}=\\frac{7}{39},\\ \\frac{ny}{ac}=\\frac{9}{65}, \\ \\frac{mq}{ab}=\\frac{7}{15}"
Then
"\\frac{bc}{a+c}\\cdot\\frac{bc}{a+b}=\\frac{7}{39}bc"
"\\frac{ac}{b+c}\\cdot\\frac{ac}{a+b}=\\frac{9}{65}ac"
"\\frac{ab}{b+c}\\cdot\\frac{ab}{b+c}=\\frac{7}{15}ab"
Let b/a=u and c/a=v, then:
"uv=\\frac{7}{39}(1+u)(1+v)"
"v=\\frac{9}{65}(u+v)(1+u)"
"u=\\frac{7}{15}(u+v)(1+v)"
"\\frac{9}{65}(u+v)(1+u)\\cdot\\frac{7}{15}(u+v)(1+v)=\\frac{7}{39}(1+u)(1+v)"
"(u+v)^2=\\frac{325}{117}=\\frac{25}{9}"
"\\frac{AI}{IK}=\\frac{b+c}{a}=\\frac{b}{a}+\\frac{c}{a}=u+v=\\frac{5}{3}"
Answer: "\\frac{5}{3}"
Comments
Leave a comment