Answer to Question #140299 in Geometry for Ali Atwi

Question #140299

BAB is a right isosceles triangle at D

1)Place point C so that DABC would be a parallelogram

2)The bisector of angle ADB cots AB at E and the bisector of angle DBC cuts CD at F

Prove that quadrilateral DEBF is a square


1
Expert's answer
2020-10-28T17:51:01-0400



Using a ruler to measure,

DE=4.5cmEB=4.5cmBF=4.5cmFD=4.5cm|DE| = 4.5cm\\ |EB| = 4.5cm\\ |BF| = 4.5cm\\ |FD| = 4.5cm


DE=EB=BF=FD=4.5cm\therefore |DE| = |EB| = |BF| = |FD| = 4.5cm


\therefore In DEBF\square DEBF, all sides are equal



From the diagram,

DE is the perpendicular bisector of ABDEB=90°|DE| \textsf{ is the perpendicular bisector of } |AB|\\ \therefore \angle DEB = 90°


Also, BF is the perpendicular bisector of DCBFD=90°\textsf{Also, } |BF| \textsf{ is the perpendicular bisector of } |DC|\\ \therefore \angle BFD= 90°

BFD=DEB=90°\angle BFD = \angle DEB = 90°


\therefore Opposite angles are right angles



Since all the sides in DEBF are equal and it’s opposite angles are right angles All its sides are congruentDEBF is a square\textsf{Since all the sides in } \square DEBF \textsf{ are equal and it's opposite angles are right angles }\\ \therefore \textsf{All its sides are congruent}\\ \therefore \square DEBF \textsf{ is a square}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment