In the taxicab metric the length of edges:
A B = ∣ A x − B x ∣ + ∣ A y − B y ∣ = AB=|A_{x}-B_{x}|+|A_{y}-B_{y}|= A B = ∣ A x − B x ∣ + ∣ A y − B y ∣ =
= ∣ 2 − ( − 1 ) ∣ + ∣ 2 − 1 ∣ = 4 =|2-(-1)|+|2-1|=4 = ∣2 − ( − 1 ) ∣ + ∣2 − 1∣ = 4 or A B = 2 Δ y + 3 ( 2 Δ x ) = 2 ⋅ 0.5 + 6 ⋅ 0.5 = 4 ; AB=2\Delta y+3 (2\Delta x)=2\cdot0.5+6\cdot0.5=4; A B = 2Δ y + 3 ( 2Δ x ) = 2 ⋅ 0.5 + 6 ⋅ 0.5 = 4 ;
B C = ∣ B x − C x ∣ + ∣ B y − C y ∣ = BC=|B_{x}-C_{x}|+|B_{y}-C_{y}|= BC = ∣ B x − C x ∣ + ∣ B y − C y ∣ =
= ∣ − 1 − 1 ∣ + ∣ 1 − ( − 1 ) ∣ = 4 ; =|-1-1|+|1-(-1)|=4; = ∣ − 1 − 1∣ + ∣1 − ( − 1 ) ∣ = 4 ;
A C = ∣ A x − C x ∣ + ∣ A y − C y ∣ = AC=|A_{x}-C_{x}|+|A_{y}-C_{y}|= A C = ∣ A x − C x ∣ + ∣ A y − C y ∣ =
= ∣ 2 − 1 ∣ + ∣ 2 − ( − 1 ) ∣ = 4 =|2-1|+|2-(-1)|=4 = ∣2 − 1∣ + ∣2 − ( − 1 ) ∣ = 4 .
A B = B C = A C = 4 AB=BC=AC=4 A B = BC = A C = 4 therefore the triangle is equilateral under the taxicab metric.
In the euclidean metric the length of edges:
A B = ( A x − B x ) 2 + ( A y − B y ) 2 = AB=\sqrt{(A_{x}-B_{x})^2+(A_{y}-B_{y})^2}= A B = ( A x − B x ) 2 + ( A y − B y ) 2 =
= ( 2 − ( − 1 ) ) 2 + ( 2 − 1 ) 2 = 3 2 + 1 2 = =\sqrt{(2-(-1))^2+(2-1)^2}=\sqrt{3^2+1^2}= = ( 2 − ( − 1 ) ) 2 + ( 2 − 1 ) 2 = 3 2 + 1 2 =
= 10 ≈ 3.16 ; =\sqrt{10}\approx3.16; = 10 ≈ 3.16 ;
B C = ( B x − C x ) 2 + ( B y − C y ) 2 = BC=\sqrt{(B_{x}-C_{x})^2+(B_{y}-C_{y})^2}= BC = ( B x − C x ) 2 + ( B y − C y ) 2 =
= ( − 1 − 1 ) 2 + ( 1 − ( − 1 ) ) 2 = ( − 2 ) 2 + 2 2 = =\sqrt{(-1-1)^2+(1-(-1))^2}=\sqrt{(-2)^2+2^2}= = ( − 1 − 1 ) 2 + ( 1 − ( − 1 ) ) 2 = ( − 2 ) 2 + 2 2 =
= 8 ≈ 2.83 ; =\sqrt{8}\approx2.83; = 8 ≈ 2.83 ;
A C = ( A x − C x ) 2 + ( A y − C y ) 2 = AC=\sqrt{(A_{x}-C_{x})^2+(A_{y}-C_{y})^2}= A C = ( A x − C x ) 2 + ( A y − C y ) 2 =
= ( 2 − 1 ) 2 + ( 2 − ( − 1 ) ) 2 = 1 2 + 3 2 = =\sqrt{(2-1)^2+(2-(-1))^2}=\sqrt{1^2+3^2}= = ( 2 − 1 ) 2 + ( 2 − ( − 1 ) ) 2 = 1 2 + 3 2 =
= 10 ≈ 3.16 =\sqrt{10}\approx3.16 = 10 ≈ 3.16 .
A B = A C ≠ B C AB=AC\neq BC A B = A C = BC therefore the triangle is not equilateral under the euclidean metric.
Comments