In the taxicab metric the length of edges:
"AB=|A_{x}-B_{x}|+|A_{y}-B_{y}|="
"=|2-(-1)|+|2-1|=4" or "AB=2\\Delta y+3 (2\\Delta x)=2\\cdot0.5+6\\cdot0.5=4;"
"BC=|B_{x}-C_{x}|+|B_{y}-C_{y}|="
"=|-1-1|+|1-(-1)|=4;"
"AC=|A_{x}-C_{x}|+|A_{y}-C_{y}|="
"=|2-1|+|2-(-1)|=4" .
"AB=BC=AC=4" therefore the triangle is equilateral under the taxicab metric.
In the euclidean metric the length of edges:
"AB=\\sqrt{(A_{x}-B_{x})^2+(A_{y}-B_{y})^2}="
"=\\sqrt{(2-(-1))^2+(2-1)^2}=\\sqrt{3^2+1^2}="
"=\\sqrt{10}\\approx3.16;"
"BC=\\sqrt{(B_{x}-C_{x})^2+(B_{y}-C_{y})^2}="
"=\\sqrt{(-1-1)^2+(1-(-1))^2}=\\sqrt{(-2)^2+2^2}="
"=\\sqrt{8}\\approx2.83;"
"AC=\\sqrt{(A_{x}-C_{x})^2+(A_{y}-C_{y})^2}="
"=\\sqrt{(2-1)^2+(2-(-1))^2}=\\sqrt{1^2+3^2}="
"=\\sqrt{10}\\approx3.16" .
"AB=AC\\neq BC" therefore the triangle is not equilateral under the euclidean metric.
Comments
Leave a comment