1."\\begin{cases} x+y=52; \\\\ (x\/4)\u00b2+(y\/4)\u00b2=109; \\end{cases} \n\\begin{cases} x=52-y; \\\\ (x\/4)\u00b2+(y\/4)\u00b2=109; \\end{cases} \n\\begin{cases} x=52-y; \\\\ ((52-y)\/4)\u00b2+(y\/4)\u00b2=109; \\end{cases} \n\\begin{cases} x=52-y; \\\\ (2704-104y+y\u00b2)\/16+y\u00b2\/16=109; \\end{cases} \n\\begin{cases} x=52-y; \\\\ 2y\u00b2-104y+960=0; \\end{cases} \n\n2y\u00b2-104y+960=0; \nD=10816-8*960=3136; \n\u221aD=56; \nx1,2=(104\u00b156)\/4; \nx1=40; x2=12; \nAnswer: 40m." 2.
"DB=\\sqrt{DC^2+BC^2};\nDB=\\sqrt{12^2+12^2}=\\sqrt{2*12^2}=12\\sqrt{2};\nDB=\\sqrt{AD^2+AB^2-2*AD*AB*cos(\\angle DAB)}=12\\sqrt{2};\n\\sqrt{8^2+AB^2-16AB*cos(120^o)}=12\\sqrt{2};\\sqrt{64+AB^2+8AB}=\\sqrt{288};\nAB^2+8AB+64=288;\nAB^2+8AB-224=0;\nD=64+4*224=960;\n\\sqrt{D}=\\sqrt{960}=8\\sqrt{15};\nAB=(-8+8\\sqrt{15})\/2=-4+4\\sqrt{15};\nAnswer: 4\\sqrt{15}-4."
3.
The condition for the existence of a trapezium is
|d-c|<|b-a|<d+c
if trapezium base is 8 and 12:
20-18<12-8<20+18
2<4<38
trapezium exist;
if trapezium base is 8 and 18:
20-12<18-8<20+12
8<10<32
trapezium exist;
if trapezium base is 8 and 20:
18-12<20-8<18+12
6<12<30
trapezium exist;
if trapezium base is 12 and 18:
20-8<18-12<20+8
12>6<28
trapezium is not exist;
if trapezium base is 12 and 20:
18-8<20-12<18+8
10>8<26
trapezium is not exist;
if trapezium base is 18 and 20:
12-8<20-18<12+8
4>2<20
trapezium is not exist;
So first base of trapezium is 8 and second base is 12,18 or 20.
But if construct all of this tapeziums none of them has sum of the opposite angles is 230°.
It means that the conditions of the problem are incorrect and this trapezium is not exist.
Comments
Leave a comment