Given
m∠A=(3x+2)
m∠B=(x−4)
And
∠A and ∠B are complementary angel.
So, we know that
m∠A+m∠B=90°
After the plug in the value
m∠A and m∠B.
(3x+2)+(x−4)=90°
Combining the like tems
4x−2=90°
4x=90°
x=23°
Now we substitute the value of x in the ∠A and ∠B.
m∠A=(3×23+2)=71°
m∠B=23−4=19°
Given
m∠A=(8x+100)
m∠B=(2x+50)
And
∠A and ∠B are supplementary angel.
∠A+∠B=180°
After plug in the value of m∠A and m∠B.
(8x+100)+(2x+50)=180°
Combining the like tems
10x+150=180°
10x=30°
x=3°
Now we substitute the value of x in the ∠A and ∠B.
m∠A=8×3+100=124°
m∠B=2×3+50=56°
Comments