the volume of the right circular cone is calculated by the formula
V = 1 3 π r 2 H V = \frac 1 3 \pi r^{2}H V = 3 1 π r 2 H
where r is the radius and H height right-circular cone and R=10 sphere radius
H = R + R 2 − r 2 H = R+\sqrt{R^{2}-r^{2}} H = R + R 2 − r 2
or
H = R − R 2 − r 2 H = R-\sqrt{R^{2}-r^{2}} H = R − R 2 − r 2
hence the function of the volume of the cone from its base
V = 1 3 π r 2 H = 1 3 π r 2 ∗ ( R + R 2 − r 2 ) = 1 3 π r 2 ∗ ( 10 + 100 − r 2 ) V = \frac 1 3 \pi r^{2}H = \frac 1 3 \pi r^{2}*( R+\sqrt{R^{2}-r^{2}}) =\frac 1 3 \pi r^{2}*( 10+\sqrt{100-r^{2}}) V = 3 1 π r 2 H = 3 1 π r 2 ∗ ( R + R 2 − r 2 ) = 3 1 π r 2 ∗ ( 10 + 100 − r 2 )
or
V = 1 3 π r 2 H = 1 3 π r 2 ∗ ( R − R 2 − r 2 ) = 1 3 π r 2 ∗ ( 10 − 100 − r 2 ) V = \frac 1 3 \pi r^{2}H = \frac 1 3 \pi r^{2}*( R-\sqrt{R^{2}-r^{2}}) =\frac 1 3 \pi r^{2}*( 10-\sqrt{100-r^{2}}) V = 3 1 π r 2 H = 3 1 π r 2 ∗ ( R − R 2 − r 2 ) = 3 1 π r 2 ∗ ( 10 − 100 − r 2 )
Comments