the volume of the right circular cone is calculated by the formula
V=13πr2HV = \frac 1 3 \pi r^{2}HV=31πr2H
where r is the radius and H height right-circular cone and R=10 sphere radius
H=R+R2−r2H = R+\sqrt{R^{2}-r^{2}}H=R+R2−r2
or
H=R−R2−r2H = R-\sqrt{R^{2}-r^{2}}H=R−R2−r2
hence the function of the volume of the cone from its base
V=13πr2H=13πr2∗(R+R2−r2)=13πr2∗(10+100−r2)V = \frac 1 3 \pi r^{2}H = \frac 1 3 \pi r^{2}*( R+\sqrt{R^{2}-r^{2}}) =\frac 1 3 \pi r^{2}*( 10+\sqrt{100-r^{2}})V=31πr2H=31πr2∗(R+R2−r2)=31πr2∗(10+100−r2)
V=13πr2H=13πr2∗(R−R2−r2)=13πr2∗(10−100−r2)V = \frac 1 3 \pi r^{2}H = \frac 1 3 \pi r^{2}*( R-\sqrt{R^{2}-r^{2}}) =\frac 1 3 \pi r^{2}*( 10-\sqrt{100-r^{2}})V=31πr2H=31πr2∗(R−R2−r2)=31πr2∗(10−100−r2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments