If RS=44 and QS=68, Find QR
Find the distance between the point (1,4) and (-2,-1):
Distance ="\\sqrt{( -2 - 1)^2 + (-1 - 4)^2} = \\sqrt{(-3)^2 + (-5)^2} = \\sqrt{(9 + 25)} = \\sqrt{34}"
Find the midpoint of segment with endpoints (9,8) and (3,5):
Midpoint(xc, yc):
"x_c = \\dfrac{x_a + x_b}{2} = \\dfrac{9 + 3}{2} = \\dfrac{12}{2} = 6 , \ny_c = \\dfrac{y_a + y_b}{2} = \\dfrac{5 + 8}{2} = \\dfrac{13}{2} = 6.5"
Midpoint(6, 6.5)
ABC is right Triangle AB =
Pythagorean theorem "AB = \\sqrt{BC^2 + AC^2}" "( if \\angle\u0421 = 90\\degree)"
Find the distance between the points (1,-8)and(-7,-2):
Distance ="\\sqrt{( -7 - 1)^2 + (-2 - (-8))^2} = \\sqrt{(-8)^2 + (-2 + 8)^2} = \\sqrt{(-8)^2 + (6)^2} = \\sqrt{(64 + 36)} = \\sqrt{100} = 10"
Comments
Dear Jade, please use the panel for submitting new questions.
If RS =32.5 and QS= 62.1 find QR
Leave a comment