Let X be a finite dimensional inner product space and T : X → X be
a linear operator. If T is self adjoint (that is < x, T x >=< T ∗x, x >).
Show that its spectrum is real. If T is unitary then show that its
eigenvalues have absolute value 1.
A linear operator T is self adjoint if and only if for all x "\\langle Tx, x \\rangle = \\langle x, Tx \\rangle" .
Let "\\lambda" be any eigenvalue of T and x a corresponding eigenvector. Then
"\\langle Tx, x \\rangle = \\langle \\lambda x, x \\rangle = \\bar\\lambda |x|^2"
"\\langle x, Tx \\rangle = \\langle x, \\lambda x \\rangle = \\lambda |x|^2"
Compare these expressions, reminding that "\\langle Tx, x \\rangle = \\langle x, Tx \\rangle". We obtain
"(\\bar\\lambda-\\lambda) |x|^2=0" , and hence "\\bar\\lambda=\\lambda". This means that eigenvalues of T are real.
A linear operator T is unitary if and only if it is invertible and for all x "\\langle T^{-1}x, x \\rangle = \\langle x, Tx \\rangle".
Let "\\lambda" be any eigenvalue of T and x a corresponding eigenvector. Then x is also an eigenvector of "T^{-1}" with the eigenvalue "\\lambda^{-1}". Compute
"\\langle T^{-1}x, x \\rangle = \\langle \\lambda^{-1} x, x \\rangle = \\bar\\lambda^{-1} |x|^2"
"\\langle x, Tx \\rangle = \\langle x, \\lambda x \\rangle = \\lambda |x|^2"
Compare these expressions, reminding that "\\langle T^{-1}x, x \\rangle = \\langle x, Tx \\rangle". We obtain
"(\\bar\\lambda^{-1}-\\lambda) |x|^2=0" , and hence "\\bar\\lambda^{-1}=\\lambda". This means that "|\\lambda|^2=\\bar\\lambda\\lambda=1".
Comments
Leave a comment