Question #183541

let H be finite separable hilbert space. show that H is unitarily isomorphic to cʳ for some r ∊ N.


1
Expert's answer
2021-05-07T09:09:02-0400


H be finite separable hilbert space


 U : H → H on a Hilbert space H that satisfies U*U = UU* = I, where U* is the adjoint of U, and I : H → H is the identity operator.


 A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold:

U is surjective

. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold:

the range of U is dense in H,



H is unitarily isomorphic to cʳ for some r ∊ N.


a=(ai) iϵn ϵf(n) and Cx=a, i=aaieia=(a_i) \space i\epsilon n \space {\epsilon} f(n) \space and \space Cx =a , \space \sum _{i=a}^{\infin}a_ie_i

Thus every separable Hilbert space can be mapped onto f(n) by a unitary operator. We say that every separable Hilbert space is unitarily isomorphic to f(n)

f(n)=cr and rϵ\epsilon N






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS