As the system of forces is equivalent to a couple of magnitude 12Nm, then
"\\vec F_1+\\vec F_2+\\vec F_3=\\vec 0"
(2i + bj) + (-i + 2j) + (ai -4j) = (a+1)i + (b-2)j = 0
a= -1 and b=2.
The magnitude of a couple is equal to
"\\vec r_1\\times\\vec F_1 + \\vec r_2\\times\\vec F_2 + \\vec r_3\\times\\vec F_3 = (i + 3j)\\times (2i + 2j) + (xi + 5j)\\times(-i + 2j) +(-i + j)\\times(-i -4j) = -4 + (2x+5) + 5 =2x+6" 12Nm is an absolute value (unsigned) of magnitude, therefore we have to consider both signs:
2x+6 = 12 implies x=3
2x+6 =-12 implies x=-9
Answer. (a) a= -1, b=2; (b) x=3 or x=-9.
Comments
Leave a comment