Question #280581

A principal of N2500 is invested at 2% interest. Find the amount after 20 years if the interest is compounded (a) annually, (b) semi-annually, (c) quarterly, (d) monthly, and (e) daily. 


1
Expert's answer
2021-12-21T12:49:09-0500

A=P(1+rn)ntA=P(1+\frac{r}{n})^{nt}

Compounded annually n=1


=N2500(1+0.021)1×20=N2500(1+\frac{0.02}{1})^{1×20}


=2500(1.02)20=N3714.87= 2500(1.02)^{20} = N3714.87




A=P(1+rn)ntA=P(1+\frac{r}{n})^{nt}

Compounded semi-annually n=2


=N2500(1+0.022)2×20=N2500(1+\frac{0.02}{2})^{2×20}


=2500(1.01)40=N3722.16=2500(1.01)^{40} =N3722.16




A=P(1+rn)ntA=P(1+\frac{r}{n})^{nt}

Compounded quarterly n=4


=N2500(1+0.024)4×20=N2500(1+\frac{0.02}{4})^{4×20}


=2500(1.005)80=N3725.85= 2500(1.005)^{80} =N3725.85



A=P(1+rn)ntA=P(1+\frac{r}{n})^{nt}

compounded monthly n =12


=N2500(1+0.0212)12×20=N2500(1+\frac{0.02}{12})^{12×20}


=2500(1.001667)240=N3728.62=2500(1.001667)^{240} =N3728.62




A=P(1+rn)ntA=P(1+\frac{r}{n})^{nt}

compounded daily n=365


=N2500(1+0.02365)365×20=N2500(1+\frac{0.02}{365})^{365×20}


=2500(1.000054795)7300=N3729.53=2500(1.000054795)^{7300}= N3729.53


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS