Given the demand function for computer as p=2400-0.5Q determine the coefficient of point of elasticity of demand when p=1800
"P=2400 -0.4Q \\\\\n\n0.4Q = 2400 -P \\\\\n\nQ = \\frac{2400}{0.4} - \\frac{P}{0.4} \\\\\n\nQ = 6000 -2.5P \\\\\n\n\\frac{\u2202Q}{\u2202p} = \\frac{\u2202}{\u2202P}(6000 -2.5P) \\\\\n\n\\frac{\u2202Q}{\u2202p} = -2.5"
For P=1800
"Q= 6000 -2.5 \\times 1800 = 6000 -4500 = 1500"
The coefficient of point of elasticity of demand can be obtained by using the formula:
"e_p = \\frac{\u2202Q}{\u2202p} \\times \\frac{P_0}{Q_0} \\\\\n\ne_p = -2.5 \\times \\frac{1800}{1500} \\\\\n\ne_p= -3"
Comments
Leave a comment