"A=\\frac{P[(1+\\frac{r}{n})^{nt}-1]}{\\frac{r}{n}}"
A"=" $ 500,000
P"=?"
r"=" "\\frac{3.92}{1200}" Compounded monthly
n"=" 12
t"=" 30 years
"500,000=\\frac{P[(1+\\frac{3.92}{1200})^{12\u00d730}-1]}{\\frac{3.92}{1200}}"
"500,000=684.24P"
"P=730.74"
Half of the years we will use 15 years:
"500,000=\\frac{P[(1+\\frac{3.92}{1200})^{12\u00d715}-1]}{\\frac{3.92}{1200}}"
"500,000=244.49P"
"P=2045.09"
For half the interest we use 1.96% so:
"500,000=\\frac{P[(1+\\frac{1.96}{1200})^{12\u00d730}-1]}{\\frac{1.96}{1200}}"
"500,000=489.50P"
P=1021.45
Half the number of years will result in a larger monthly deposit of 2045.09
Comments
Leave a comment