Question #204458

6. Consider the following utility function: 𝒖 = 𝟒𝟎𝟎 (𝟏 + 𝟏)−𝟏. 𝒙𝒚

a. Is this utility function homogenous? Briefly explain. [3]

b. Use implicit differentiation to find the 𝑀𝑅𝐶𝑆. [2]

c. Write down an expression for the indifference curve if 𝒖 = 𝟐𝟎. [2]


1
Expert's answer
2021-06-08T18:45:41-0400

(a) The function is not homogeneous

as u=400[1x+1y]1u=400[\frac{1}{x}+\frac{1}{y}]^{-1}


=400(y)1[1yx+y3x2y3x3+......]=\frac{400}{(y)^{-1}}[1-\frac{y}{x}+\frac{y^3}{x^2}-\frac{y^3}{x^3}+......]


=40y[1yx+yx2yx3+......]=40y[1-\frac{y}{x}+\frac{y}{x}^2-\frac{y}{x}^3+......]

not homogeneous.


(b)mu=δuδx(x,y)=400(1)[(1x+1y)]2mu=\frac{\delta u}{\delta x}(x,y)=400(-1)[(\frac{1}{x}+\frac{1}{y})]^{-2}

=(1x2)=(\frac{-1}{x^2})

similarly

mu2=δuδx(x,y)=400(1)[(1x+1y)]2[1y2]mu_2=\frac{\delta u}{\delta x}(x,y)=400(-1)[(\frac{1}{x}+\frac{1}{y})]^{-2}[\frac{-1}{y^2}]


so MRS=δuδx=δu/δxδu/δyMRS=\frac{\delta u}{\delta x}=\frac{\delta u/\delta x}{\delta u/\delta y}


=Mu1Mu2=y2x2=\frac{-Mu_1}{Mu_2}=\frac{-y^2}{x^2}


MRS=y2x2MRS=\frac{y^2}{ x^2}


(c)given that u=20

so, u=20=400[(1x+1y)]1u=20=400[(\frac{1}{x}+\frac{1}{y})]^{-1}

the required indifference curve is

1x+1y=20\frac{1}{x}+\frac{1}{y}=20


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS