6. Consider the following utility function: π = πππ (π + π)βπ. ππ
a. Is this utility function homogenous? Briefly explain. [3]
b. Use implicit differentiation to find the ππ πΆπ. [2]
c. Write down an expression for the indifference curve if π = ππ. [2]
(a) The function is not homogeneous
as "u=400[\\frac{1}{x}+\\frac{1}{y}]^{-1}"
"=\\frac{400}{(y)^{-1}}[1-\\frac{y}{x}+\\frac{y^3}{x^2}-\\frac{y^3}{x^3}+......]"
"=40y[1-\\frac{y}{x}+\\frac{y}{x}^2-\\frac{y}{x}^3+......]"
not homogeneous.
(b)"mu=\\frac{\\delta u}{\\delta x}(x,y)=400(-1)[(\\frac{1}{x}+\\frac{1}{y})]^{-2}"
"=(\\frac{-1}{x^2})"
similarly
"mu_2=\\frac{\\delta u}{\\delta x}(x,y)=400(-1)[(\\frac{1}{x}+\\frac{1}{y})]^{-2}[\\frac{-1}{y^2}]"
so "MRS=\\frac{\\delta u}{\\delta x}=\\frac{\\delta u\/\\delta x}{\\delta u\/\\delta y}"
"=\\frac{-Mu_1}{Mu_2}=\\frac{-y^2}{x^2}"
"MRS=\\frac{y^2}{ x^2}"
(c)given that u=20
so, "u=20=400[(\\frac{1}{x}+\\frac{1}{y})]^{-1}"
the required indifference curve is
"\\frac{1}{x}+\\frac{1}{y}=20"
Comments
Leave a comment