Question #204016

Suppose the short-run cost function of Tyrell Corporation is 𝒄 = πŸ“πŸŽπŸŽπŸŽ + πŸπŸŽπŸŽπ’’ + πŸ–π’’πŸ

a.  Find the level/s of  that satisfies/satisfy the first-order and second-order conditions for the minimisation

of Tyrell’s average cost (𝒂𝒄). [4]

Show that 𝒂𝒄 equals marginal cost (π’Žπ’„) at the level/s of  obtained in (a). [2

1
Expert's answer
2021-06-07T17:02:19-0400

(a)

Given cost function:

C=5000+100q+8q2C = 5000 + 100q + 8q^2

Average cost (AC)

=Cq=\frac{ C}{q}

=5000q+100+8q=\frac{5000}{q}+100+8q

To minimize AC, FOC :-

=Ξ΄(AC)Ξ΄q=0=\frac{\delta(AC)}{\delta q}=0

or, 5000(βˆ’1)qβˆ’2+8=05000(-1)q^{-2} + 8 = 0

or, q=25q = 25


(b)

SOC :-

d2(AC)dq2=βˆ’5000(βˆ’2)qβˆ’3\frac{d^{2}(AC)}{dq^{2}}=-5000(-2)q^{-3}

Substituting q = 25 we get 0.64, which is > 0. Hence SOC is satisfied. AC must be minimum at q = 25.

Substituting q=25 in AC we get 500.

Now, MC:-

Ξ΄CΞ΄q=100+16q\frac{\delta C}{\delta q}=100+16q

Substituting q=25 in MC we get 500.

Hence MC = AC at q=25.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS