- find the formula:
c=S0×N(d1)−K×N(d2)×DF
d1=σ×t0.5ln(KS0)+(r+2σ2)×t
d2=d1−σ×t0.5
DF=e−r×t
S0=100
K=200
σ=0.1
r=0.08, 0.0067 years
t=2, 0.167 years
DF=e−0.0067×0.167=0.999
d1=0.1×0.1670.5ln(200100)+(0.0067+20.12)×0.167=−0.6455
d2=−0.6455−0.1×0.1670.5=0.6863
c=100×N(−0.6455)−200×N(−0.6863)×0.999=−23.27
K=320
DF=e−0.0067×0.167=0.999
d1=0.1×0.1670.5ln(320100)+(0.0067+20.12)×0.167=−1.1155
d2=−1.1155−0.1×0.1670.5=−1.1563
c=100×N(−1.1155)−320×N(−1.1563)×0.999=−26.33
2.
similar to the first task
2 month:
DF=e−0.004167×0.167=0.999
d1=0.1×0.1670.5ln(120100)+(0.0067+20.12)×0.167=−0.1347
d2=−0.1347−0.1×0.1670.5=−0.1755
c=100×N(−0.1347)−120×N(−0.1755)×0.999=−6.94
3 month:
DF=e−0.0067×0.25=0.999
d1=0.08×0.250.5ln(120110)+(0.004167+20.082)×0.25=−0.0409
d2=−0.0409−0.1×0.250.5=−0.0809
c=110×N(−0.0409)−120×N(−0.0809)×0.999=−2.87
a)
d2=0.05
d2=d1−σ×t0.5
d2+σ×t0.5=d1
0.05+0.1×0.1670.5=0.0908
c=100×N(0.0908)−120×N(0.05)×0.999=−8.71
b)
G=(S×ο)(×2π×t)0.52,71828182845904−n
n=2d12+d×t
G=0.9808
c)
V=1001×S0×2,71828182845904−qt×(2π)0.51×2,718281828459042−d12
V=0.1589
d)T=T1(−(2t0.5S0σ2,71828182845904−qt×(2π)0.51−rX2,71828182845904−rtN(d2)+qS02,71828182845904−qtN(d1)
T=0.0205
e)Rho=K×t×2,71828182845904−r×t×N(d2)
Rho=8.60
3.the amount of the monthly payment will be calculated according to the formula:
x=S(P+(1+P)N−1P)=20000(0.004167+(1+0.004167)12−10.004167)=1712.15
we will make a payment schedule
In the first case, the repayment of the annuity monthly loan. In the second case, if we repay the entire loan amount in the first month, then no further payments need be made.
Comments