The Moon company currently sells for 100 $. The annual stock price volatility is %10 and risk- free interest rate %8, the price of a call on a company’s stock with strike price 200 $ and time period 2 months. Find the stock option price with Black and Scholes Model. If option market value 320 $ what is the option strategy?
"c=S0\\times N(d1)-K\\times N(d2)\\times DF""d1=\\frac{ln(\\frac{S0}{K})+(r+\\frac{\\sigma^2}{2})\\times t}{ \\sigma\\times t^{0.5}}"
"d2=d1-\\sigma\\times t^{0.5}"
"DF=e^{-r\\times t}"
S0=100
K=200
"\\sigma=0.1"
r=0.08, 0.0067 years
t=2, 0.167 years
"DF=e^{-0.0067\\times0.167}=0.999"
"d1=\\frac{ln(\\frac{100}{200})+(0.0067+\\frac{0.1^2}{2})\\times 0.167}{ 0.1\\times0.167^{0.5}}=-0.6455"
"d2=-0.6455-0.1\\times 0.167^{0.5}=0.6863"
"c=100\\times N(-0.6455)-200\\times N(-0.6863)\\times0.999=-23.27"
K=320
"DF=e^{-0.0067\\times0.167}=0.999"
"d1=\\frac{ln(\\frac{100}{320})+(0.0067+\\frac{0.1^2}{2})\\times 0.167}{ 0.1\\times0.167^{0.5}}=-1.1155"
"d2=-1.1155-0.1\\times 0.167^{0.5}=-1.1563"
"c=100\\times N(-1.1155)-320\\times N(-1.1563)\\times0.999=-26.33"
Comments
Leave a comment