Answer to Question #156756 in Financial Math for Alv

Question #156756

The Moon company currently sells for 100 $. The annual stock price volatility is %10 and risk- free interest rate %8, the price of a call on a company’s stock with strike price 200 $ and time period 2 months. Find the stock option price with Black and Scholes Model. If option market value 320 $ what is the option strategy?


1
Expert's answer
2021-02-03T01:23:46-0500

c=S0×N(d1)K×N(d2)×DFc=S0\times N(d1)-K\times N(d2)\times DFd1=ln(S0K)+(r+σ22)×tσ×t0.5d1=\frac{ln(\frac{S0}{K})+(r+\frac{\sigma^2}{2})\times t}{ \sigma\times t^{0.5}}


d2=d1σ×t0.5d2=d1-\sigma\times t^{0.5}


DF=er×tDF=e^{-r\times t}

S0=100

K=200

σ=0.1\sigma=0.1

r=0.08, 0.0067 years

t=2, 0.167 years

DF=e0.0067×0.167=0.999DF=e^{-0.0067\times0.167}=0.999

d1=ln(100200)+(0.0067+0.122)×0.1670.1×0.1670.5=0.6455d1=\frac{ln(\frac{100}{200})+(0.0067+\frac{0.1^2}{2})\times 0.167}{ 0.1\times0.167^{0.5}}=-0.6455

d2=0.64550.1×0.1670.5=0.6863d2=-0.6455-0.1\times 0.167^{0.5}=0.6863

c=100×N(0.6455)200×N(0.6863)×0.999=23.27c=100\times N(-0.6455)-200\times N(-0.6863)\times0.999=-23.27


K=320

DF=e0.0067×0.167=0.999DF=e^{-0.0067\times0.167}=0.999

d1=ln(100320)+(0.0067+0.122)×0.1670.1×0.1670.5=1.1155d1=\frac{ln(\frac{100}{320})+(0.0067+\frac{0.1^2}{2})\times 0.167}{ 0.1\times0.167^{0.5}}=-1.1155

d2=1.11550.1×0.1670.5=1.1563d2=-1.1155-0.1\times 0.167^{0.5}=-1.1563

c=100×N(1.1155)320×N(1.1563)×0.999=26.33c=100\times N(-1.1155)-320\times N(-1.1563)\times0.999=-26.33

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment