Question #122393
Let ρ =( w1,w2) be a portfolio of two securities. Find the value of w1and w2 in the following situations:
i) p12 = -1 and ρ is risk-free.
ii) σ1 = σ2 and variance P is minimum.
iii) Variance on P is minimum and ρ12 = -0.5 , σ1 = 2 and σ2 = 3.
1
Expert's answer
2020-06-22T15:39:58-0400

i)

1=μ1×ω1+μ2×ω2-1=\mu1\times\omega1+\mu2\times\omega2

w1=1-w2

1=μ1×(1ω2)+μ2×ω2-1=\mu1\times(1-\omega2)+\mu2\times\omega2

1=μ1μ1ω2+μ2×ω2-1=\mu1-\mu1\omega2+\mu2\times\omega2

1μ1=μ1ω2+μ2×ω2-1-\mu1=-\mu1\omega2+\mu2\times\omega2

1μ1μ1+μ2=ω2\frac{-1-\mu1}{-\mu1+\mu2}=\omega2


11μ1μ1+μ2=ω11-\frac{-1-\mu1}{-\mu1+\mu2}=\omega1



ii)


σ1 = σ2

solve by the formula


σ2=(ω1)2(σ1)2+2ρω1ω2σ1σ2+(ω2)2(σ2)2\sigma^2=(\omega1)^2(\sigma1)^2+2\rho\omega1\omega2\sigma1\sigma2+(\omega2)^2(\sigma2)^2


σ2=(ω1)2(σ1)2+2ρω1ω2(σ1)2+(ω2)2(σ1)2\sigma^2=(\omega1)^2(\sigma1)^2+2\rho\omega1\omega2(\sigma1)^2+(\omega2)^2(\sigma1)^2

σ2=(σ1)2((ω1)2+2ρω1ω2+(ω2)2)\sigma^2=(\sigma1)^2((\omega1)^2+2\rho\omega1\omega2+(\omega2)^2)

σ2(σ1)2=((ω1)2+2ρω1ω2+(ω2)2)\frac{\sigma^2}{(\sigma1)^2}=((\omega1)^2+2\rho\omega1\omega2+(\omega2)^2)


1ω2=ω11-\omega2=\omega1


σ2(σ1)2=((1ω2)2+2ρ(1ω2)ω2+(ω2)2)\frac{\sigma^2}{(\sigma1)^2}=((1-\omega2)^2+2\rho(1-\omega2)\omega2+(\omega2)^2)

σ2(σ1)2=(12ω2+(ω2)2+2ρω22ρ(ω2)2+(ω2)2)\frac{\sigma^2}{(\sigma1)^2}=(1-2\omega2+(\omega2)^2+2\rho\omega2-2\rho(\omega2)^2+(\omega2)^2)


σ2(σ1)2=(12ω2+2(ω2)2+2ρω22ρ(ω2)2)\frac{\sigma^2}{(\sigma1)^2}=(1-2\omega2+2(\omega2)^2+2\rho\omega2-2\rho(\omega2)^2)


σ2(σ1)2=(12(ω2+(ω2)2)+()2ρ(ω2+(ω2)2))\frac{\sigma^2}{(\sigma1)^2}=(1-2(\omega2+(\omega2)^2)+(-)2\rho(\omega2+(\omega2)^2))

σ2(σ1)2=(1(ω2+(ω2)2)(22ρ)\frac{\sigma^2}{(\sigma1)^2}=(1-(\omega2+(\omega2)^2)(2-2\rho)


σ2(σ1)21(22ρ)(ω2)2=ω2\frac{\frac{\sigma^2}{(\sigma1)^2}-1}{(2-2\rho)}-(\omega2)^2=\omega2


1σ2(σ1)21(22ρ)(ω2)2=ω11-\frac{\frac{\sigma^2}{(\sigma1)^2}-1}{(2-2\rho)}-(\omega2)^2=\omega1



iii)

solve by the formula

σ2=(ω1)2(σ1)2+2ρω1ω2σ1σ2+(ω2)2(σ2)2\sigma^2=(\omega1)^2(\sigma1)^2+2\rho\omega1\omega2\sigma1\sigma2+(\omega2)^2(\sigma2)^2


σ2=(ω1)2×4+2(0.5)ω1ω2×6+(ω2)2×9\sigma^2=(\omega1)^2\times4+2(-0.5)\omega1\omega2\times6+(\omega2)^2\times9


σ2=4(ω1)26ω1ω2+9(ω2)2\sigma^2=4(\omega1)^2-6\omega1\omega2+9(\omega2)^2


σ24=(ω1)21.5ω1ω2+2.25(ω2)2\frac{\sigma^2}{4}=(\omega1)^2-1.5\omega1\omega2+2.25(\omega2)^2

1ω2=ω11−ω2=ω1


σ24=(1ω2)21.5(1ω2)ω2+2.25(ω2)2\frac{\sigma^2}{4}=(1-\omega2)^2-1.5(1-\omega2)\omega2+2.25(\omega2)^2


σ24=12ω2+(ω2)21.5ω2+1.5(ω2)2+2.25(ω2)2\frac{\sigma^2}{4}=1-2\omega2+(\omega2)^2-1.5\omega2+1.5(\omega2)^2+2.25(\omega2)^2


σ24=13.5ω2+2.75(ω2)2\frac{\sigma^2}{4}=1-3.5\omega2+2.75(\omega2)^2

σ2412.75(ω2)23.5=ω2\frac{\frac{\sigma^2}{4}-1-2.75(\omega2)^2}{3.5}=\omega2

1σ2412.75(ω2)23.5=ω11-\frac{\frac{\sigma^2}{4}-1-2.75(\omega2)^2}{3.5}=\omega1








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS